
Payment terminals as general purpose

(game-)computers

Thomas Rinsma

MCH2022

2022-07-25

Table of contents

▶ Disclaimers + introduction

▶ About the device

▶ Getting access

▶ Bootloader and OS

▶ Building a ”toolchain”

▶ Porting Doom and more

▶ Demo time

Disclaimers

Quick heads up

▶ No new vulnerabilities in these slides

▶ We will ignore payment keys / payment security

whoami

Thomas Rinsma
Security Analyst @ Codean

Background:

▶ Computer science, software security

▶ Android, mobile payments

▶ Getting into embedded

https://th0mas.nl

thomasrinsma@protonmail.com

https://th0mas.nl

Context

I was bored and went looking for a target:

▶ Embedded system to run Doom on

▶ Not too crazy in terms of hardware hacking skills

▶ Cool factor?

The device
VX820

The device
Why?

Why a payment terminal?

▶ Seems unnecessarily powerful

▶ All the useful peripherals

Why this device?

▶ Relatively old: easier exploitation?

▶ Still quite common in NL

Device specs

Hardware:

▶ 400Mhz ARMv6 processor

▶ 128MB flash, 32MB RAM

▶ 240x320 color LCD (touchscreen)!

▶ Ethernet, USB, serial

▶ Smartcard reader (x4), NFC,
magstripe, beeper

Software:

▶ ”Verix OS”

▶ Multi-application

▶ Configuration through env vars

▶ Unix-like filesystem/syscalls

Getting access
How it all began

Getting access

Initial state:

▶ Running the CCV payment application

▶ Configured as a “pin pad”

Locked down..

▶ No way to exit application

▶ System menu shortcut disabled

▶ Only processing commands from POS

Getting access
Capturing the commands between the VX570 and the VX820

Getting access
Some time later :)

Getting access

But this doesn’t get us any closer to Doom...

Getting access

These devices wipe sensitive data when tampered with.

So what happens when we open it up?

Getting access
A different screen!

▶ Device is fully wiped

▶ Now boots into system menu

System menu password is publicly
documented :)

Getting access
A different screen!

▶ Device is fully wiped

▶ Now boots into system menu

System menu password is publicly
documented :)

166831

Clearing the tamper flag

Clearing the tamper flag

Clearing the tamper flag

Clearing the tamper flag

Clearing the tamper flag

▶ Press ’2’ on IPP Key Load screen

▶ Device reboots

▶ No longer “tampered”!

Clearing the tamper flag

▶ Press ’2’ on IPP Key Load screen

▶ Device reboots

▶ No longer “tampered”!

Clearing the tamper flag

▶ Press ’2’ on IPP Key Load screen

▶ Device reboots

▶ No longer “tampered”!

Getting access
Downloading applications

DOWNLOAD NEEDED?

▶ Proprietary protocol called XDL

▶ Features:
▶ Load files
▶ Set config variables
▶ Wipe flash or SRAM

Easily reverse engineered :)

1 from xdl import XDL
2

3 binary = "APP.OUT"
4

5 xdl = XDL()
6

7 xdl.connect()
8 xdl.set_config_var("*GO", binary)
9 xdl.send_file(binary)

10 xdl.stop()

https://github.com/ThomasRinsma/pyxdl

https://github.com/ThomasRinsma/pyxdl

Getting access
Downloading applications

DOWNLOAD NEEDED?

▶ Proprietary protocol called XDL

▶ Features:
▶ Load files
▶ Set config variables
▶ Wipe flash or SRAM

Easily reverse engineered :)

1 from xdl import XDL
2

3 binary = "APP.OUT"
4

5 xdl = XDL()
6

7 xdl.connect()
8 xdl.set_config_var("*GO", binary)
9 xdl.send_file(binary)

10 xdl.stop()

https://github.com/ThomasRinsma/pyxdl

https://github.com/ThomasRinsma/pyxdl

Getting access

So, can we just upload DOOM.OUT?

Getting access
Program authentication

Yes, but...

▶ Programs (.OUT) normally come with a
signature file (.P7S)

▶ Replaced with a .S1G file after first boot.

▶ On boot:
if(verify p7s(file))

generate s1g(file);

▶ Runtime:
verify s1g(file);

Source: research by @ivachou and @A1ex S:
https://www.paymentvillage.org/resources

https://twitter.com/ivachyou
https://twitter.com/A1ex_S
https://www.paymentvillage.org/resources

Known issues

Previously found “features”/bugs:

1. Hidden shell: T:SHELL.OUT

▶ interesting but low privilege

2. Buffer overflow in kernel code

▶ patched or different per OS version

3. Hidden bootloader mode
▶ Still present in this device!

Source: research by @ivachou and @A1ex S:
https://www.paymentvillage.org/resources

https://twitter.com/ivachyou
https://twitter.com/A1ex_S
https://www.paymentvillage.org/resources

Known issues

Previously found “features”/bugs:

1. Hidden shell: T:SHELL.OUT
▶ interesting but low privilege

2. Buffer overflow in kernel code

▶ patched or different per OS version

3. Hidden bootloader mode
▶ Still present in this device!

Source: research by @ivachou and @A1ex S:
https://www.paymentvillage.org/resources

https://twitter.com/ivachyou
https://twitter.com/A1ex_S
https://www.paymentvillage.org/resources

Known issues

Previously found “features”/bugs:

1. Hidden shell: T:SHELL.OUT
▶ interesting but low privilege

2. Buffer overflow in kernel code
▶ patched or different per OS version

3. Hidden bootloader mode
▶ Still present in this device!

Source: research by @ivachou and @A1ex S:
https://www.paymentvillage.org/resources

https://twitter.com/ivachyou
https://twitter.com/A1ex_S
https://www.paymentvillage.org/resources

Known issues

Previously found “features”/bugs:

1. Hidden shell: T:SHELL.OUT
▶ interesting but low privilege

2. Buffer overflow in kernel code
▶ patched or different per OS version

3. Hidden bootloader mode
▶ Still present in this device!

Source: research by @ivachou and @A1ex S:
https://www.paymentvillage.org/resources

https://twitter.com/ivachyou
https://twitter.com/A1ex_S
https://www.paymentvillage.org/resources

Boot sequence
Overview

▶ “Secure boot”: each stage authenticates the next

▶ 2nd stage (SBI) authenticates and loads Verix OS

▶ SBI also listens for a keycombo: 1+5+9
▶ Uses XDL to load authenticated scripts
▶ Or, if a magic header is provided:

memcpy(addr, file contents, file len)

Boot sequence
Summary

To summarize:

▶ Arbitrary write allows for code
execution

▶ Completely breaking secure boot

▶ Somehow still present on these
devices!

▶ Luckily for us: this is a way in :)

Boot sequence
Summary

To summarize:

▶ Arbitrary write allows for code
execution

▶ Completely breaking secure boot

▶ Somehow still present on these
devices!

▶ Luckily for us: this is a way in :)

Boot sequence
Summary

To summarize:

▶ Arbitrary write allows for code
execution

▶ Completely breaking secure boot

▶ Somehow still present on these
devices!

▶ Luckily for us: this is a way in :)

Code execution
The plan

Use code execution in SBI to get control over Verix:

1. Overwrite SBI with a patched version

2. Keep original bootloader functionality intact

3. Add a patch to the OS that calls gen s1g("H.OUT");

Code execution (1)

0x001a9800

0x00189800

pc

Load and auth VX OS

1+5+9 download mode SBI

B 0x40000000

Code execution (1)

0x001a9800

0x00189800

pc

Load and auth VX OS

1+5+9 download mode SBI

B 0x40000000
0x001a9800

0x00189800

Load and auth VX OS

1+5+9 download mode

B 0x40000000

stage0: BL <stage1>

stage1: patch stage2

Patched SBIpc

Code execution (2)

0x40000000

0x40080000

0x001a9800

0x00189800

Load and auth VX OS

1+5+9 download mode

B 0x40000000

stage0: BL <stage1>

stage1: patch stage2

Patched SBI

Verix OS
(compressed)

pc

Clone

Decompress

Code execution (2)

0x40000000

0x40080000

0x001a9800

0x00189800

Load and auth VX OS

1+5+9 download mode

B 0x40000000

stage0: BL <stage1>

stage1: patch stage2

Patched SBI

Verix OS
(compressed)

0x40000000

0x40080000

0x001a9800

0x00189800

Load and auth VX OS

1+5+9 download mode

B 0x40000000

stage0: BL <stage1>

stage1: patch stage2

Patched SBI

Verix OS
(compressed)

stage2: patch stage3

pc

pc

Clone

Decompress

Clone

Decompress

Code execution (3)

0x40000000

0x40080000

0x001a9800

0x00189800

Load and auth VX OS

1+5+9 download mode

B 0x40000000

stage0: BL <stage1>

stage1: patch stage2

Patched SBI

Verix OS
(compressed)

stage2: patch stage3

pc Clone

Decompress

Code execution (3)

0x40000000

0x40080000

0x001a9800

0x00189800

Load and auth VX OS

1+5+9 download mode

B 0x40000000

stage0: BL <stage1>

stage1: patch stage2

Patched SBI

Verix OS
(compressed)

stage2: patch stage3

pc
0x40000000

0x40080000

0x001a9800

0x00189800

Load and auth VX OS

1+5+9 download mode

B 0x40000000

stage0: BL <stage1>

stage1: patch stage2

stage2: patch stage3

pc

Patched SBI

Verix OS
(compressed)

Verix OS
(compressed)

(copy)
stage2: patch stage3

0x40400000

0x40480000

Clone

Decompress

Clone

Decompress

Clone

Decompress

Code execution (4)

0x40000000

0x40080000

0x001a9800

0x00189800

Load and auth VX OS

1+5+9 download mode

B 0x40000000

stage0: BL <stage1>

stage1: patch stage2

stage2: patch stage3

Clone

pc

Patched SBI

Verix OS
(compressed)

Verix OS
(compressed)

(copy)
stage2: patch stage3

0x40400000

0x40480000

Decompress

Clone

Decompress

Code execution (4)

0x40000000

0x40080000

0x001a9800

0x00189800

Load and auth VX OS

1+5+9 download mode

B 0x40000000

stage0: BL <stage1>

stage1: patch stage2

stage2: patch stage3

Clone

pc

Patched SBI

Verix OS
(compressed)

Verix OS
(compressed)

(copy)
stage2: patch stage3

0x40400000

0x40480000

0x40000000

0x40080000

0x001a9800

0x00189800

Load and auth VX OS

1+5+9 download mode

B 0x40000000

stage0: BL <stage1>

stage1: patch stage2

pc

Patched SBI

Verix OS

Verix OS
(compressed)

(copy)
stage2: patch stage3

0x40400000

0x40480000

Decompress

Clone

Decompress

Clone

Decompress

Initialize

Code execution (5)

0x40000000

0x40080000

0x001a9800

0x00189800

Load and auth VX OS

1+5+9 download mode

B 0x40000000

stage0: BL <stage1>

stage1: patch stage2

pc

Patched SBI

Verix OS

Verix OS
(compressed)

(copy)
stage2: patch stage3

0x40400000

0x40480000

Clone

Decompress

Initialize

Code execution (5)

0x40000000

0x40080000

0x001a9800

0x00189800

Load and auth VX OS

1+5+9 download mode

B 0x40000000

stage0: BL <stage1>

stage1: patch stage2

pc

Patched SBI

Verix OS

Verix OS
(compressed)

(copy)
stage2: patch stage3

0x40400000

0x40480000

Clone

Decompress

0x40000000

0x40080000

0x001a9800

0x00189800

Load and auth VX OS

1+5+9 download mode

B 0x40000000

stage0: BL <stage1>

stage1: patch stage2

pc

Patched SBI

Verix OS

Verix OS
(compressed)

(copy)
stage2: patch stage3

0x40400000

0x40480000

Clone

Decompress

Initialize Initialize

stage3:
gen_s1g("H.OUT")

gen_s1g() { ... }

Code execution
The result

Executable format

The program header specifies:

▶ Magic and various flags (?)

▶ Entrypoint

▶ Which system libraries to load (e.g. SYS.LIB)

▶ Start and size of code (ELF’s .text)

▶ Size of read-only data (ELF’s .rodata)

▶ Stack size

Toolchain

Format seems pretty simple!

Let’s make a hacky “toolchain”:

▶ Build an ARMv6 ELF file normally

▶ Extract the relevant sections

▶ Copy-paste the header and patch
the sizes

Toolchain

Format seems pretty simple!

Let’s make a hacky “toolchain”:

▶ Build an ARMv6 ELF file normally

▶ Extract the relevant sections

▶ Copy-paste the header and patch
the sizes

Toolchain
Syscalls

We want to be able to print to the screen, read input, etc. −→ syscalls.

▶ The interface is familiar: open, read, write, etc.
▶ print to screen: write to /DEV/CONSOLE
▶ read keystrokes: read from /DEV/CONSOLE

▶ Syscall numbers can be RE’d from other programs and public documentation

Toolchain

Now it’s a matter of engineering:

etcetera...

Porting stuff

Now we can start porting Doom :)

[demo time]

The end

@thomasrinsma

https://th0mas.nl/2022/07/18/verifone-pos-hacking/

https://twitter.com/thomasrinsma
https://th0mas.nl/2022/07/18/verifone-pos-hacking/

