
Radboud University

Master’s Thesis
Computing Science

Seeing through obfuscation: interactive
detection and removal of opaque

predicates

Author:
Thomas Rinsma
thomasrinsma@gmail.com

Supervisor:
Dr Erik Poll

e.poll@cs.ru.nl

Second reader:
Prof. Marko van Eekelen

m.vaneekelen@cs.ru.nl

External supervisor:
Eloi Sanfelix Gonzalez

sanfelixgonzalez@riscure.com

A thesis submitted in fulfilment of the requirements
for the degree of Master of Science

in the

Digital Security Group
Institute for Computing and Information Sciences

August 23, 2017

mailto:thomasrinsma@gmail.com
mailto:e.poll@cs.ru.nl
mailto:m.vaneekelen@cs.ru.nl
mailto:sanfelixgonzalez@riscure.com

iii

Abstract

A program can be obfuscated to impede analysis of its inner workings or data while
retaining its original functionality. The effectiveness of software obfuscation depends
highly on the technique used, on the program that is being obfuscated and on the
type of secret that is being hidden. Yet, under the right circumstances, an obfuscated
program can require a considerably larger amount of time and effort to analyse than
its non-obfuscated counterpart.

Different methods of obfuscation provide protection against different kinds of
attackers. The focus of this thesis is on control-flow obfuscation and specifically on
one method of control-flow obfuscation: the insertion of opaque predicates.

While control-flow obfuscation techniques were originally mostly intended to protect
against manual analysis, upcoming automated software testing and analysis techniques
such as symbolic execution have created a new challenge for obfuscators. Several
automated deobfuscators make use of such analysis techniques [22] [6]. However, some
of these automated deobfuscation techniques are either not available in (easy-to-use)
tools or are limited to a very specific type of obfuscation and lack versatility.

This thesis gives an overview of the current state-of-the-art in opaque predicates
and control-flow obfuscation in general, showing that for some of these obfuscations,
little to no automated deobfuscation tools are available, at least not outside the realm
of academic proofs-of-concept. It describes an attempt at partly filling this gap by
the creation of an IDA Pro plugin called Drop, which implements an advanced
opaque-predicate detection algorithm (Ming et al. [22]) in a versatile manner.

We show that Drop is able to detect and remove invariant and contextual opaque
predicates in both artificial and non-artificial environments. Additionally, we show
that the ability for an analyst to provide interactive input during the deobfuscation
process can be rather useful in various scenarios, and the ability to provide a specific
type of constraint on program arguments can even help detect and reverse an otherwise
very strong type of control-flow obfuscation: input-invariant opaque predicates.

v

Acknowledgements

I would like to thank my supervisor, Erik Poll, for his valuable feedback and his time
spent reading many draft versions of this document over the past six months.

I also want to thank the people at Riscure. Specifically my external supervisor,
Eloi Sanfelix Gonzalez, for his feedback and our insightful conversations; and Ileana
Buhan, for helping me to find a topic and allowing me to stay at Riscure for this
thesis project in the first place. The atmosphere and the people at Riscure have been
great in general but I want to thank my friends and fellow interns specifically. Nils,
Karolina, Parul, Roeland, Petros, Danilo and Romain: thank you for the support and
the much needed distractions during these sometimes stressful months.

Finally, I’m very thankful to my parents for motivating me and encouraging me to
pursue my computer (security) hobby in the form of this degree.

vii

Contents

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 Motivation . 2
1.2 Thesis overview . 2

2 Obfuscation 3
2.1 Related concepts . 4
2.2 Formal obfuscation theory . 4
2.3 Control-flow obfuscation . 5

2.3.1 Opaque predicates . 5
Number-theoretic predicates . 6
Aliasing-based predicates . 6
Contextual opaque predicates 6
Input-invariant opaque predicates 7
Dynamic opaque predicates . 8
Other anti–symbolic execution opaque constructs 8

2.3.2 Control-flow flattening . 9
2.3.3 Virtualization obfuscation . 10
2.3.4 Runtime code generation and modification 10
2.3.5 Return-oriented programming 10
2.3.6 Tools . 11

3 Deobfuscation 13
3.1 Workflow and tools . 13
3.2 Analysis techniques for automated deobfuscation 14

3.2.1 Static analysis . 14
Symbolic execution . 14

3.2.2 Dynamic analysis . 15
3.3 Deobfuscation attacks on specific transformations 15

3.3.1 Opaque predicates . 16
3.3.2 Control-flow flattening . 16

3.4 General attacks . 16
3.5 Problem statement . 17

4 Introducing Drop 19
4.1 Requirements . 19

4.1.1 Specific functionality . 20
4.2 Architectural choices . 20
4.3 Implementation . 21

4.3.1 User Interface and Workflow 22

viii

4.3.2 Interactive input . 24
4.3.3 Concrete execution . 24
4.3.4 Opaque predicate detection . 25
4.3.5 Visualisation and elimination 26

5 Evaluation 29
5.1 Effectiveness on a small constructed program 29

5.1.1 Control-flow graphs . 32
5.1.2 Decompilation output . 32

5.2 Effectiveness against ‘real’ code . 36
5.2.1 Obfuscated by Tigress . 36
5.2.2 Obfuscated by OLLVM . 39

5.3 Input-invariant opaque predicates . 40
5.3.1 Results . 40

5.4 Architecture-independence . 41

6 Conclusions and reflection 43
6.1 Conclusions . 43
6.2 Future work . 44

A Test program: caesar.c 47

B Obfuscated version of caesar.c 49

Bibliography 53

1

Chapter 1

Introduction

Software obfuscation allows one to protect parts of an application such as algorithms
or secret constants from analysis through reverse-engineering efforts. While a perfect
protection from such analyses is probably practically – if not theoretically – impossible
(see Section 2.2), obfuscation can still considerably increase the effort required by an
analyst to obtain the sought-after secrets.

As is laid out in Section 2, there are many possible applications for software
obfuscation including nefarious ones such as malware camouflaging. While this alone
warrants the research on deobfuscation techniques, even legitimate users of obfuscation
tools can benefit from such research because it gives us a better idea of the strengths
and weaknesses of both obfuscation and deobfuscation techniques.

With the exception of several academic tools, there exist very few tools for
automatic deobfuscation, especially when compared with the number of obfuscation
tools out there (Section 2.3.6). This makes intuitive sense because it is harder to
remove “noise” than it is to add it. Yet, the fundamental properties of obfuscation –
specifically the functionality property – combined with practical limitations severely
limit the possible “noisiness” of any applied obfuscation. For example, string constants
in an application’s source code can be obfuscated by encrypting them, but in order
for the application to maintain its functionality they need to be decrypted again
before they are printed to the screen. Similarly, one can insert bogus control-flow
(e.g. by inserting dead code, see Section 2.3.1) into an application to obfuscate a secret
algorithm, but careful analysis should show that such code is either never executed
or does not contribute to the algorithm’s result. This indicates that there is the
possibility of automatic detection or removal of these obfuscations, and there are
indeed techniques that do exactly this (e.g. [22] and [11]). Regarding control-flow
obfuscation specifically (Section 2.3), it is sometimes possible to use modern code
exploration techniques such as symbolic execution to detect or even revert these
obfuscating transformations.

A problem arises when obfuscators start to exploit weaknesses of such automated
deobfuscation techniques in the design of their obfuscating transformations (as Wang
et al. [30] and Banescu et al. [4] do by causing path explosion in symbolic execution
engines, see Section 2.3.1). Blindly applying an automated deobfuscation technique on
programs obfuscated using these transformations will not be effective. In this thesis,
we hypothesise that – especially in these cases, but also for less advanced obfuscations
– there is a use for a hybrid deobfuscation workflow, i.e. not entirely by hand or fully
automated, but somewhere in between.

2 Chapter 1. Introduction

1.1 Motivation
Existing techniques for automatic deobfuscation of control-flow obfuscations make
little to no use of human assistance. Because human analysts are good at detecting
patterns, they could possibly provide valuable input to a deobfuscation algorithm,
interactively steering it in the right direction by providing additional context and
thereby speeding up the reverse-engineering process. This could be especially helpful
in cases where a fully automated deobfuscator would be very slow or would fail entirely,
for example by spending large amounts of time analysing irrelevant code.

A notion that is almost intrinsically linked with interactivity is visualisation. The
utility of any automatic deobfuscator highly depends on the type and quality of its
output. It might act like a black box, transforming some obfuscated program O(P)
into a (possibly partly deobfuscated) program P ′, or it could (additionally) produce
some other type of output representing the result of the analysis performed, such as
a simplified control-flow graph. An interactive deobfuscator would need to produce
a good visualisation of the obfuscated program and of the results of its analysis in
order for the analyst to provide it with valuable input. There might be different
types of visualization or hybrid methods (e.g. colouring basic-blocks or annotating the
control-flow graph with symbolic constraints) that improve comprehensibility of the
deobfuscated program.

We hypothesise that a deobfuscation tool with these two properties – i.e. interactiv-
ity and proper visualisation – can be helpful for an analyst looking to reverse-engineer
certain types of control-flow obfuscations, particularly certain advanced variants of
opaque predicates.

1.2 Thesis overview
This rest of this thesis is organised as follows:

• Chapters 2 and 3 provide an overview of background and related work on the
topics of software obfuscation and deobfuscation respectively, both specifically
focussing on opaque predicates and other control-flow obfuscations. Section 3.5
summarises some perceived problems with the state-of-the-art of control-flow
deobfuscation.

• Chapter 4 introduces Drop, the tool produced for this thesis with the intention
of providing a possible solution to some of the problems stated in the previous
chapters.

• Chapter 5 evaluates the effectiveness of Drop in several experiments that aim
to test different aspects of the tool.

• Chapter 6 draws conclusions from literature research and from the results
obtained from the experiments in Chapter 5. Additionally, it lays out weak
points of Drop and more generally details some possible topics for future work.

3

Chapter 2

Obfuscation

Software obfuscation is the act of obscuring algorithms or data contained in a program
in such a way that it becomes hard (or at least harder) to extract or determine this
content by someone with full access to the program and the system it runs on.

In a sense, software obfuscation is a method of security through obscurity. In
cryptography, this concept is widely rejected: the security of a (crypto)system must
not depend on the secrecy of its mechanism (i.e. Kerckhoffs’ principle). Yet, when it
comes to hiding the mechanism of a piece of software from an attacker who must still be
able to execute that software on his own system (a so called man-at-the-end attacker),
obfuscation – or at least a weak form of it – seems to be the only option available
from a purely software perspective. Section 2.2 goes into detail on why “perfectly
strong” obfuscation in the theoretical sense is not possible and why obfuscation is
therefore usually (including in this thesis) discussed in a heuristic and practical sense.

What this means in practice is that given enough time and resources any obfuscated
program can be reverse engineered. While this might seem discouraging, software
obfuscation is useful in practice because it can nevertheless be quite strong and there
are use cases where permanent protection is not necessarily required.

In the video game industry for example, where a large portion of sales often occur
in a short period after the launch of a product, obfuscation is sometimes used to protect
anti-piracy and anti-cheating code. In such a scenario, the focus is on protecting the
code for (at least) that initial period of time, not permanently. Similar reasoning
holds – more generally – for all proprietary software that receives frequent updates: if
every version of a program is obfuscated in a different manner, the obfuscation only
needs to “hold up” until the next version of the program is released. Of course, some
reverse engineered knowledge about one version of the program might be applicable to
the next version, so the efficacy of such a model highly depends on what the software
author is trying to protect.

Software that handles copyright-protected media with certain restrictive measures
(i.e. DRM1) is often obfuscated in order to protect decryption keys or algorithms.
Specifically, white-box cryptography is often used for such applications, which by itself
can be considered a form of obfuscation.

On a different note, malware is also often obfuscated. This is done in order to
protect it from being detected by anti-virus software and to make manual analysis as
difficult as possible. Additionally, if it exploits any yet-unknown vulnerabilities (i.e. 0-
days) then it is beneficial for the author to obfuscate code related to exploitation in
order to hide details of the vulnerabilities and thereby delay their discovery by security
researchers. On the other side of this arms race, software vendors will often obfuscate
their released security patches in order to thwart analysis of the vulnerabilities that
were patched.

1Digital Rights Management

4 Chapter 2. Obfuscation

2.1 Related concepts
Two closely related concepts to software obfuscation are software watermarking and
software tamper-proofing [7]. There is a lot of overlap between techniques used
for implementing these concepts and those used for (de)obfuscation. Generally, all
transformations used for these goals – i.e. the obfuscation of (part of) a program, the
application of a watermark to a program and the application of tamper-protection
code to a program – share the notion that it should be hard to undo them. For
this reason, watermarks and tamper-proofing code are often obfuscated or embedded
within obfuscated code or data.

While these concepts are outside the scope of this thesis, their similarity to
software obfuscation means that any results obtained here are likely to be relevant
and applicable to these concepts as well.

2.2 Formal obfuscation theory
Theoretical research on obfuscation has been progressing ever since the 2001 paper
of Barak et al. [5]. In this paper, Barak et al. provide a strong formal definition of
an obfuscator (see below). Importantly, they also prove that obfuscation according
to that (virtual black-box) definition is impossible in general, because there exists a
family of programs that cannot be obfuscated.

Recently, however, there has been a surge of new research after Garg et al. [13]
showed that a weaker form of obfuscation – so-called indistinguishability obfuscation –
could be possible. Informally speaking, this roughly means that given an obfuscated
program and several candidates for the corresponding original program, it is impossible
to determine which of the candidates is the original program.

While these new results are promising and could potentially be useful for various
kinds of cryptographic applications (such as fully homomorphic encryption [1]), they
are far from being suitable for the purpose of practical software obfuscation. For this
reason, work on practical software obfuscation approaches has largely been heuristic
and empirical in nature.

Still, it is important to define the properties of an ideal obfuscator. Barak et al.
[5] state the properties of an obfuscated program O(P) obtained by applying an
obfuscator O to a program P as follows (paraphrased informally):

functionality O(P) computes the same function as P .

efficiency O(P) is at most polynomially slower and larger than P .

virtual black box any information that can be efficiently computed from O(P)
can be efficiently computed given oracle access to P .

To state the last property in other words: there is no information to be gained from
the obfuscated program that can not be gained from the input/output behaviour of
the original program (nor from the input/output behaviour of the obfuscated program
because they are functionally equivalent).

Several years before the publication of the formal definition above, Collberg,
Thomborson, and Low [9] provided a more practical definition of an obfuscating
transformation T : Let P and P ′ be the source and target program respectively, then
P
T−→ P ′ is an obfuscating transformation from P to P ′ if P and P ′ have the same

observable behaviour. The authors specifically note that this definition allows P ′ to
have extra side-effects as long as these are not experienced by the user. Additionally,

2.3. Control-flow obfuscation 5

in the case where P encounters an error condition, P ′ may or may not terminate [9].
This relaxation of the functionality property – compared to the definition of Barak
et al. – allows for more flexibility in the design of obfuscating transformations.

In the same paper, Collberg et al. propose two variable properties in their attempt
to assess the quality of an obfuscating transformation:
potency To what degree is a human reader confused? How much higher is the

complexity of P ′ compared to P , as measured by one of several measures of
program complexity?

resilience How well are automatic deobfuscation attacks resisted? How much time
is required to construct an automatic deobfuscator that is able to effectively
reduce the potency of T , and what is the execution time and space required by
such an automatic deobfuscator to effectively reduce the potency of T ?

While both of these properties are inherently imprecise, they clearly specify the
distinction between the goals of obfuscating software against human attackers versus
machine attackers.

2.3 Control-flow obfuscation
A control-flow obfuscation is any obfuscating transformation that obfuscates the
control-flow of a program, as opposed to its data. This can be done by modifying
the actual control-flow of the program statically (e.g. control-flow flattening, Section
2.3.2, virtualization, Section 2.3.3, or return-oriented programming, Section 2.3.5) or
on-the-fly (self-modification, Section 2.3.4), by obscuring the actual control-flow paths
within a larger collection of bogus control-flow (i.e. opaque predicates, Section 2.3.1)
or by sequentially applying two or more of these transformations.

The main focus of this section is on opaque predicates because they are the main
target of the deobfuscation tool produced for this thesis. Nevertheless, several other
control-flow obfuscation techniques are summarised in Sections 2.3.2 to 2.3.5 to provide
some broader context.

2.3.1 Opaque predicates

An opaque predicate is a predicate that is traditionally either always true or always
false, but in such a way that this is hard to detect by human analysts and automated
analysis. Opaque predicates typically allow one to insert pieces of bogus (i.e. dead)
code and control-flow into a program which are never executed and obscure the actual
functionality of the program. Interestingly, they can also be used in various ways for
watermarking by inserting unique information in pieces of dead code [7] or as constants
within predicates [3]. Furthermore, they can be used for non-control-flow obfuscation
as well, e.g. as a basis for data obfuscation by constructing secret constants with
arithmetic expressions containing opaque predicates.

The concept of the opaque predicate has been around for at least 20 years and
has seen various improvements over the years to combat increasingly more advanced
deobfuscation techniques. Collberg formalised opaque constructs based on simple
number-theoretic properties and on array and pointer aliasing in 1997 [9] and various
more advanced variants of them in Surreptitious Software in 2009 [8]. These constructs
would traditionally be referred to as just opaque predicates, but in order to make the
distinction with more advanced opaque predicate constructions more clear, we will
refer to them as invariant opaque predicates (following the terminology of Ming et al.
[22]):

6 Chapter 2. Obfuscation

Definition 2.3.1 An invariant opaque predicate is a single predicate whose value
is constant, independent of the values of its contained variables, program state or user
input. It is an invariant in and of itself.

Described below are two common concepts on which such invariant opaque predicates
(but also more advanced types of opaque predicates, as described further along in this
section) can be based: number theory and aliasing.

Number-theoretic predicates

Number-theoretic constructs used in opaque predicates often follow the form:

∀x ∈ Z : n|f(x)

i.e. f(x) ≡ 0 (mod n), where f(x) is usually a simple polynomial over x. Examples
of such predicates are x2 + x ≡ 0 (mod 2) and x3 − x ≡ 0 (mod 3), both of which
are opaquely true for all integer values of x. Similar constructs can however also be
created with multiple variables. An example of this is the following opaquely false
predicate on all integers x and y: 7y2 − 1 = x2.

Aliasing-based predicates

Opaque predicates based on so-called array aliasing and pointer aliasing are both
largely based on the principle of constructing a data-structure in a seemingly random
manner but following certain invariants. Predicates can then be constructed from
properties derived from these invariants. Additionally, to increase potency (and
possibly resilience), the data-structure can be updated freely during the execution of
the program as long as the invariants are not violated. Natural language examples of
such invariants are: “every third element of the array is 1 (mod 5)” in the case of an
array-like data-structure, or “pointers p1 and p2 never point to the same node” in the
case of a linked-list or graph-like data-structure [8].

Contextual opaque predicates

In their overview on intellectual property protection, Drape et al. [12] highlight the
lack of stealthiness as a disadvantage of constructs such as those proposed by Collberg,
arguing instead for (what are now often called) contextual opaque predicates. The
truth value of a contextual opaque predicate is derived from its context within the
program, specifically on one or more invariant properties. This invariant context is
created by one or more pre-condition predicates which are already present in the
program (or are implied). The contextual opaque predicate is then constructed such
that the conjunction of these pre-conditions implies the truth value of the contextual
opaque predicate.

Definition 2.3.2 A contextual opaque predicate is an opaque predicate whose
value is not constant by itself, but is constant given a certain invariant (i.e. some
other property which always holds at the location of the predicate). It is therefore
not self-contained, but apart from that it has the same effect as an invariant opaque
predicate.

To give an example, the predicate 3x > 14 is not opaquely true by itself, but together
with the context of x > 4 it forms a contextual opaque predicate2. For maximum

2Ignoring the possibility of an integer-overflow.

2.3. Control-flow obfuscation 7

stealthiness this context is chosen to be created as implicitly as possible, e.g. as a
side-effect of a pre-existing calculation.

Input-invariant opaque predicates

A related concept to the above is a construct based on what Banescu et al. [4] call an
input invariant. When applied to opaque predicates, as the authors of Tigress did with
their input-type predicates (see Section 2.3.6), the result is effectively a contextual
opaque predicate whose context is based on properties of the program’s input.

Definition 2.3.3 An input-invariant opaque predicate is an opaque predicate
whose value is not constant by itself, but is constant given that a certain predicate
over properties over the arguments of the program (the “input invariant”) holds.

This input invariant is specified by the author of the program at obfuscation-time and
is usually chosen to be based on some weak restrictions that already trivially hold
during normal runs of the program (e.g. a parameter specifying a count of something
will never be negative). However, when an input is provided such that the invariant
does not hold, the predicate might evaluate to a different value, causing arbitrary
behaviour. This technique violates the functionality property defined by Barak et al.
[5] because the obfuscated program does not exhibit the same functionality as the
original program when such arbitrary behaviour occurs. However, because arbitrary
behaviour only occurs in what are effectively error conditions anyway, this violation
of the functionality property is in fact rather similar to its relaxation by Collberg and
Thomborson [7] (as described in section 2.2).

At the cost of this, Banescu et al. [4] argue that programs obfuscated with input-
invariant opaque predicates (and other input invariant constructs) are harder to
deobfuscate automatically using symbolic execution–based techniques. This is in
fact their main argument for the use of input-invariant opaque predicates. The idea
being that the set of constraints encountered by the symbolic execution–engine will
not logically imply the opaqueness of input-invariant opaque predicates, as it does
for other types of opaque predicates (see Section 3.3.1). After all, these predicates
are not technically opaque in the traditional sense, because there are executions of
the program resulting in a different value for the predicate (namely those where the
invariant does not hold). Determining the validity of one such execution (i.e. Is this
the intended execution path?) is a very hard and entirely different problem, and is
outside the scope of a symbolic execution–engine.

However, the invariants provided to the obfuscator must be predicates over the
program’s arguments that hold for every valid execution. They can therefore not be
much3 weaker than the program’s (presumably documented) constraints over these
arguments, as provided to the user. This means that it might be relatively easy
for an analyst to make educated guesses as to what invariants were provided to the
obfuscator. Given such guessed invariants and given that they are strong enough, a
deobfuscator can use logic again to determine the opaqueness of a predicate. In this
thesis (Section 3.5 specifically), it is hypothesised that a deobfuscator with a certain
amount of interactivity can in fact be used to attack such constructs in practice.

3Depending on to what degree the functionality property of the obfuscator is allowed to be violated.

8 Chapter 2. Obfuscation

1
2
3

(a) Before insertion

1
2

1

3
2
3

p

q

T F

T F

(b) After insertion

Figure 2.1: Inserting the correlated predicates p and q that together
form a dynamic opaque predicate (figure from [31]).

Dynamic opaque predicates

Palsberg et al. [23] classify both invariant and contextual opaque predicates as static
opaque predicates and introduce the concept of the dynamic opaque predicate4:

Definition 2.3.4 A dynamic opaque predicate is part of a tuple of correlated
predicates which always either evaluate to the same or the opposite truth value, which
might be different at different runs of the program. These predicates are inserted in
such a way that all possible control-flow paths along the predicates have the same
functionality.

Figure 2.1 shows such a case where two correlated predicates p and q are created
and inserted such that their truth value is always equal, yet can arbitrarily differ at
different runs of the program without altering the functionality of the program. In
this case, this is visualised by the instruction sequence {1, 2, 3} which is equivalent to
both {1, 2} followed by {3} and to {1} followed by {2, 3}.

These dynamic opaque predicates are arguably more difficult to construct than
static opaque predicates because both branches of each condition need to contain
valid code and the functionality of all possible code-paths along the branches needs
to be the same. An obfuscator is restricted in its ability to insert such predicates by
the type and number of instructions in a basic-block, i.e. the longer a basic-block, the
more ways in which it can be split up.

A generalized method of automatically inserting such dynamic opaque predicates
in structures such as branches and loops in addition to straight-line code was developed
by Xu, Ming, and Wu in 2016 [31]. They argue that these generalized dynamic opaque
predicates are harder to deobfuscate than regular dynamic opaque predicates because
the generalization of the insertion algorithm allows iterative insertion of predicates
(i.e. running the obfuscator on its own output iteratively), which obfuscates which
predicates are correlated.

Other anti–symbolic execution opaque constructs

Meanwhile, more research has also been conducted on improving the robustness of
non-dynamic opaque predicates against deobfuscation techniques. Wang et al. [30]

4Sometimes instead referred to as a dynamically opaque predicate.

2.3. Control-flow obfuscation 9

(a) Before control-flow flattening (b) After control-flow flattening

Figure 2.2: Control-flow graph of an example function before and after
applying control-flow flattening (figures from Tigress documentation).

proposed the use of sequences such as the Collatz sequence to cause path explosion in
symbolic execution engines. The Collatz (or 3n+1) sequence is created by iteratively
applying the following function to its own output, starting with a positive integer n:

f(n) =
{
n/2 if n ≡ 0 (mod 2)
3n+ 1 if n ≡ 1 (mod 2)

The resulting sequence of this iterative application always seems to converge to a fixed
value (namely 1) after a finite number of steps. Collatz conjectured that this property
holds for all positive initial values, but this has not been proven. This (unproven)
property holds for a generalized set of similar Collatz functions.

The idea of Wang et al. is to construct a loop in which such a formula is iteratively
applied until the fixed-point is reached, starting with a value of n that is dependent
on user-input. As soon as the fixed-point is reached, the obfuscated piece of code
is executed and the loop exits. Because of the apparent dependency on a symbolic
value (user input), a naive symbolic execution engine will have to consider both
possible branches at each loop iteration, quickly generating rather complex (non-
linear) constraints which are difficult to solve.

2.3.2 Control-flow flattening

Another well-established method of code obfuscation is control-flow flattening, as
formalised by Chenxi Wang in 2001 [29] (and therefore sometimes nicknamed chenx-
ification). The core idea of this technique is the transformation of all control-flow
transfers into indirect transfers. This is achieved by effectively turning the function
into a switch statement within an unconditional loop. Each basic block is assigned a
branch of the switch statement, allowing control-flow transfers to occur by assigning
to the control variable the value of the basic block that is to be executed next. The
resulting control-flow graph shows a single dispatcher block as the sole successor and
predecessor of every other basic block in the function5, thereby completely hiding the
actual control-flow of the function. Figure 2.2 shows the effect of this technique on
the control-flow graph of a small function.

5Depending on both the compiler and the disassembler used, the dispatching can be shown to
occur in several steps, creating a (still obscure) “ladder” of dispatcher blocks.

10 Chapter 2. Obfuscation

2.3.3 Virtualization obfuscation

Virtualization-based techniques can result in a control-flow graph that looks similar
to the result of control-flow flattening. Yet, these techniques work according to
an entirely different principle. During obfuscation, a selected portion of code is
translated (i.e. compiled) into a custom (often RISC-like) instruction-set. This
translated code together with an interpreter of its instruction-set is what then makes
up the obfuscated program. To impede reverse-engineering, a virtualization obfuscator
will often randomize the instruction-set encoding for each program it obfuscates.
Additionally, further obfuscation can be performed on parameters or on the ordering
of parameters of specific instructions [24].

Because of the indirect nature of the control-flow in the resulting obfuscated
programs, they can be difficult to analyse. An attacker is forced to reverse engineer
both the instruction-set encoding and the translated program itself.

2.3.4 Runtime code generation and modification

A more efficient and versatile alternative to virtualization is runtime code gener-
ation (i.e. just-in-time (JIT) compilation). Obfuscators employing this technique
generate obfuscated code which itself generates native code during runtime, which
is subsequently executed. Somewhat similarly to virtualization obfuscation, the
original program is transformed by the obfuscator into a list of instructions in an
intermediate language. These instructions are in this case converted to jitting code,
which itself can be obfuscated and diversified in a variety of manners (e.g. Tigress’s
jitting obfuscation allows this with options such as --JitObfuscateArguments and
--JitImplicitFlowHandle).

A disadvantage of runtime code generation is that the obfuscator needs to have
knowledge of the target architecture. This disadvantage is not necessarily shared by
any of the other previously mentioned types of obfuscating transformations.

Instead of generating all of the native code at once before executing it, the
generation and execution can be intertwined in various ways. A piece of generated
code itself can for example contain a key which is needed to generate the next piece
of code. This general concept is known as self-modification [16] [2].

2.3.5 Return-oriented programming

Return-oriented programming (ROP) is an exploitation technique that – under the
right conditions – allows arbitrary code execution in environments with W ⊕ X
protection (i.e. environments where writeable memory cannot be executed). It works
by chaining together pieces of pre-existing code to obtain and execute a malicious
program, circumventing the need to write such a program to an executable memory
segment.

While it was originally designed for exploitation, return-oriented programming
can also be used as an obfuscation technique, i.e. by hiding a (sub-)program within a
larger innocuous program. Lu, Xiong, and Gao [20] put this in practice with their
RopSteg obfuscator which allows for program steganography by using return-oriented
programming.

2.3. Control-flow obfuscation 11

2.3.6 Tools

It is difficult to get a good picture of the features and functionality of all the obfuscators
that are being used because many of them are proprietary or in-house products. Still,
many tools are publicly available to use for different use-cases.

One such use-case is the protection of Android applications. Android applications
are usually Java-based, and Java code can often be reconstructed rather accurately
from compiled byte-code when no obfuscation is applied. Tools like ProGuard6 and
Shield4J7 protect Java-based applications from reverse-engineering by (among other
things) obfuscating the names of classes and class members. Other tools such as
Allatori8, DashO9 and DexGuard10 are able to also perform control-flow obfuscation.
Similar tools exist for .NET-based applications for Windows, which are similarly easy
to decompile when no obfuscation is applied.

More interesting however for this thesis is the obfuscation of native code. Two
publicly available academic tools which provide control-flow obfuscation functionality
for native code are Obfuscator-LLVM (OLLVM)11[15] and Tigress12[4]. Whereas
OLLVM only supports control-flow flattening and the insertion of one type of opaque
predicates and is not very configurable, Tigress supports almost every control-flow
obfuscation technique that has been theorized while being configurable with over a
hundred command-line options.

6https://www.guardsquare.com/en/proguard
7http://shield4j.com/
8http://www.allatori.com/
9https://www.preemptive.com/solutions/android-obfuscation

10https://www.guardsquare.com/en/dexguard
11https://github.com/obfuscator-llvm/obfuscator/
12http://tigress.cs.arizona.edu/

https://www.guardsquare.com/en/proguard
http://shield4j.com/
http://www.allatori.com/
https://www.preemptive.com/solutions/android-obfuscation
https://www.guardsquare.com/en/dexguard
https://github.com/obfuscator-llvm/obfuscator/
http://tigress.cs.arizona.edu/

13

Chapter 3

Deobfuscation

Software deobfuscation can be defined as the inverse of software obfuscation. Never-
theless, obfuscation transformations are often not completely invertible, i.e. for most
obfuscators O, there is no possible deobfuscator O−1 such that O−1(O(P)) = P for
all programs P . The mere transformation of source code to a binary executable file –
as performed by a compiler – is an example of an irreversible obfuscation: information
such as comments and variable names is irreversibly lost during compilation. For
this reason, deobfuscation of an obfuscated program is often taken to mean the act of
extracting any obfuscated “secrets” from the program to the degree needed for the
use case of the analyst. In the compiler example where variable names are lost, one
can still extract a proprietary algorithm from the compiled program by analysing its
disassembly output.

Section 3.1 describes a typical reverse-engineering workflow and the incorporation
of deobfuscation tools. Section 3.2 introduces the different types of analyses techniques
that are used by automatic deobfuscation techniques. Section 3.3 lists some previous
work on automatic deobfuscation that targets specific transformations, while Section
3.4 details more general and transformation-oblivious attacks.

3.1 Workflow and tools
The process of deobfuscation often consists at least partially of manual analysis.
However, more and more free and proprietary deobfuscation tools are being created,
most of which are designed for a specific architecture, platform, or category of
obfuscations. This section will give a short and non-exhaustive overview of the
available tools for a few different use-cases.

One such use-case is the reverse-engineering of (usually Windows and x86) malware.
Malware applications often make use of data obfuscation transformations such as
packing and string obfuscation. Various tools are available for reverse-engineering such
transformations such as PackerAttacker1 and FLOSS2. When control-flow is obfuscated
as well, one can use VirtualDeobfuscator3 for virtualization-based obfuscations and
de4dot4 for .NET executables obfuscated with various kinds of data and control-flow
transformations.

Another category of software for which many deobfuscation tools are available is
Android software, and to a lesser degree, Java applications in general. Many tools are
able to transform obfuscated Java or Dalvik byte-code back into Java code. Examples

1https://github.com/BromiumLabs/PackerAttacker
2https://github.com/fireeye/flare-floss
3https://github.com/jnraber/VirtualDeobfuscator
4https://github.com/0xd4d/de4dot

https://github.com/BromiumLabs/PackerAttacker
https://github.com/fireeye/flare-floss
https://github.com/jnraber/VirtualDeobfuscator
https://github.com/0xd4d/de4dot

14 Chapter 3. Deobfuscation

of this are JMD5, DeGuard6 and simplify7. Additionally, there is JEB8, which will
decompile both Dalvik and native Android code with support coming for several
deobfuscation transformations including control-flow unflattening and the removal of
opaque predicates in the upcoming version 2.3.

Outside of the Android domain, there exist several more general tools for control-
flow deobfuscation. Jakstab9 implements several static analysis techniques to allow
for accurate control-flow recovery and automatic reversal of virtualization-based
obfuscations on (x86) Windows and Linux platforms [18] [17]. The logic oriented
opaque predicate checker (LOOP)10 is a research tool based on Intel’s PIN and the
Binary Analysis Platform (BAP) that allows for the automatic detection of several
types of opaque predicates on x86 platforms [22]. Section 3.3.1 contains a description
of the techniques implemented in this tool.

There are also several IDA Pro plugins related to deobfuscation: VMAttack11,
which enables an analyst to attack (stack-based) virtualization obfuscations; and
Optimice12, which is able to detect some simple opaque predicates and remove dead
code. Sadly, it seems that Optimice has been abandoned while it is still in a relatively
undeveloped state.

3.2 Analysis techniques for automated deobfuscation
Software analysis techniques can roughly be divided into two categories: static and
dynamic. Both of these are described below in terms of how they apply to (control-flow)
deobfuscation.

3.2.1 Static analysis

The field of static program analysis encompasses all techniques that don’t necessitate
execution of the program under analysis. For the purpose of deobfuscation, various
techniques can come in handy. A prerequisite for most analyses is the generation
(i.e. recovery) of the control-flow graph of the program or function. This is a hard
problem but various heuristics make it possible to recover a good approximation in
many cases [27]. The theoretical recovery of a complete and sound control-flow graph
in fact inherently requires some control-flow deobfuscation because this graph should
not contain unreachable basic-blocks such as those caused by opaque predicates.

In practice, techniques such as program slicing, data-flow analysis and abstract
interpretation can be applied on top of a CFG in order to more precisely determine
relations between instructions, basic-blocks and functions. Some of these techniques are
used by both compilers and deobfuscators to perform optimisations such as dead-code
removal and constant propagation.

Symbolic execution

A specific static analysis technique that has been used in techniques for automated
deobfuscation recently is symbolic execution.

5https://github.com/contra/JMD
6http://apk-deguard.com/
7https://github.com/CalebFenton/simplify
8https://www.pnfsoftware.com/jeb2/
9http://www.jakstab.org/

10https://github.com/s3team/loop
11https://github.com/anatolikalysch/VMAttack
12https://code.google.com/archive/p/optimice/

https://github.com/contra/JMD
http://apk-deguard.com/
https://github.com/CalebFenton/simplify
https://www.pnfsoftware.com/jeb2/
http://www.jakstab.org/
https://github.com/s3team/loop
https://github.com/anatolikalysch/VMAttack
https://code.google.com/archive/p/optimice/

3.3. Deobfuscation attacks on specific transformations 15

The principle behind symbolic execution is as follows: instead of executing a
program on inputs of actual values, its execution is simulated by passing symbolic
values instead. Program variables whose value would depend on these input values
now contain symbolic expressions. Additionally, a special symbolic expression called
the path condition is maintained during execution. The path condition is a predicate
which is at all points during the execution a conjunction of conditions over symbolic
variables, that must be satisfied in order to reach the current point in the program.
A conditional branch instruction therefore splits the symbolic execution up into two
“branches”, each with a different path condition (namely, the previous path condition
conjoined with either the branch condition or the negation of the branch condition).
Because a program can have an infinitely large number of such branches (e.g. because of
an infinite loop), the symbolic execution tree can get arbitrarily large if path-trimming
heuristics are not applied.

The concept of symbolic execution was originally formulated by King [19] in 1976
as an alternative to traditional program testing techniques for assuring that a given
program meets its requirements. Looking back, King’s paper has been very influential
and many innovations and different applications of symbolic execution have since
arisen as theorem provers and constraint solvers have gotten more efficient.

In the context of control-flow deobfuscation, symbolic execution is interesting for
its ability to semantically represent (part of) a program. Ideally, the symbolic formulas
constructed by symbolically executing a program represent what is being calculated,
which is theoretically independent from how it is calculated, i.e. how the control-flow
is laid out. This property is useful for deobfuscation because control-flow obfuscations
often complicate the manner in which a computation is performed without changing
the result of the computation (functionality property).

Section 3.3.1 and 3.4 mention some specific cases where symbolic execution has
been used for the purpose of deobfuscation.

3.2.2 Dynamic analysis

Dynamic analysis techniques are based on the execution of the program under test.
Software testing is a form of dynamic analysis.

Apart from the program’s output, various aspects of the program’s behaviour can
be analysed as well. A specific form of program behavioural monitoring is instruction-
level tracing: recording every instruction that gets executed when the program is
executed on a certain input. The result of this – a trace – can be analysed afterwards
with static-analysis techniques.

A somewhat related concept is concolic (concrete + symbolic) execution. This
a hybrid between concrete execution (i.e. testing) and symbolic execution. The key
innovation of this concept being that the program under test is initially ran with
concrete input values in order to obtain a trace from which the symbolic path condition
is extracted. An SMT13 solver is then used to obtain new concrete input values which
cause the execution to take a different branch, by inverting conjuncts of the path
condition. This process is repeated in order to quickly explore more possible paths.

3.3 Deobfuscation attacks on specific transformations
There are two types of approaches that can be taken when building a deobfuscator.
On the one hand, one can take a general and transformation-oblivious approach

13Satisfiability Modulo Theories

16 Chapter 3. Deobfuscation

by using advanced analysis techniques such as symbolic execution to, for example,
simplify a program or recover key parts of an algorithm. On the other hand, one
can target a specific obfuscating transformation – or even the implementation of a
transformation by a specific obfuscator. In this section I will examine deobfuscation
techniques and tools of the latter kind, specifically regarding opaque predicates and
control-flow flattening.

3.3.1 Opaque predicates

In 2006, Madou [21] showed that a dynamic approach can be capable of detecting
opaque predicates in an obfuscated program. His technique roughly consists of
analysing which branches appear to be unconditional during the runtime of a program,
before fuzzing those branches with random inputs to make a more informed guess as
to their opacity. While the results obtained from such approaches are neither sound
nor complete, they can be efficient and possibly provide a starting point for further
analysis.

Dalla Preda et al. [10] have shown that some number-theoretic opaque predicates
(i.e. those of the form ∀x ∈ Z : n|f(x)) can be attacked statically by an abstract
interpretation–based approach. Alternatively, symbolic or concolic execution–based
techniques can be used to find and eliminate more advanced (e.g. contextual) opaque
predicates, as shown by Ming et al. [22] and David et al. [11].

3.3.2 Control-flow flattening

Control-flow flattening transformations can sometimes be reversed entirely statically,
as shown by Udupa et al. [28]. The authors note however that their approach does
not work well when faced with interprocedural interactions or pointer aliasing.

3.4 General attacks
In addition to these “attacks” on specific obfuscation transformations, there has been
an effort to create a general approach to control-flow deobfuscation by Yadegari
et al. [32]. They propose a system that combines concolic execution and taint analysis
with a set of transformation-oblivious simplification rules. After experimentation
they conclude that this system is effective at deobfuscating programs that have been
obfuscated using virtualization and return-oriented programming.

Salwan [25] also successfully took a transformation-oblivious approach by using
symbolic execution to attack Tigress’s challenge programs, which are obfuscated using
multiple combinations of different transformations.

3.5. Problem statement 17

3.5 Problem statement
As is outlined in this chapter, multiple methods of attacking control-flow obfuscations
have been theorized over the years and several of them have been implemented in
publicly accessible tools (e.g. LOOP and Jakstab, see Section 3.1). However, apart
from not being very versatile and easy to use, these tools remain mostly ineffective
against certain recent innovations in control-flow obfuscations. Specifically, they are
unable to detect input-invariant opaque predicates (see Section 2.3.1). Such input-
dependent techniques can cause path-explosion in naive symbolic execution–based
deobfuscators because these deobfuscators don’t possess any knowledge about invariant
properties of the program input.

A human analyst, however, might be able to spot such invariants and provide them
as additional context to a deobfuscator, allowing it to reason about constructs like input-
invariant opaque predicates. In general, for a deobfuscator to be as versatile as possible,
it should allow for human input at many points during the deobfuscation process. The
analyst could for example select candidate predicates to analyse, specify information
about the program’s global state, or specify functions to be hooked to simplify analysis.
Such an interactive deobfuscator would be more robust against different variations
and future enhancements of obfuscation techniques than deobfuscators that currently
exist.

Chapter 4 introduces the deobfuscation tool produced for this thesis with the intent
to test the hypothesis that such interactivity is helpful in various cases and might
even allow it to detect input-invariant opaque predicates, a previously undetectable
type of obfuscation.

19

Chapter 4

Introducing Drop

In Section 3.5, a problem with existing deobfuscation tools is identified. Namely, their
lack of user-friendliness, versatility and their inability to effectively reverse certain
advanced context- and input-dependent control-flow obfuscations. The concept of a
more versatile and interactive deobfuscation tool was proposed which would be able
to attack various obfuscated functions automatically and certain others by leveraging
the skills of a human analyst.

This proposed solution was put into practice in a tool called Drop (short for Drop
Removes Opaque Predicates). Drop is a plugin for the widely popular Interactive
Disassembler (IDA Pro, also referred to as just IDA). There are several reasons why
IDA Pro was chosen as a ‘host’ platform for Drop: it has a rich plugin API which
allows plugins in different languages including Python and C++ to tap into most
of its functionality and interface; it has built-in and community-developed support
for loading binaries built for almost every architecture and platform; and lastly, it is
already widely used for reverse-engineering purposes and is often the main tool in a
reverse-engineering workflow.

Section 4.1 specifies the ideal non-functional and functional requirements of Drop.
Section 4.2 details the choices that were made regarding the libraries and frameworks
used by Drop. Section 4.3 describes how the required functionality was implemented.

4.1 Requirements
While Drop is primarily a research tool intended for experimentation with interactive
deobfuscation techniques, there are some over-arching requirements that a polished
version of such a tool should ideally satisfy:

• It should be cross-platform, i.e. it should work on all platforms on which IDA
runs: Windows, Mac OS and Linux.

• It should be as architecture-agnostic as possible, allowing the analysis of binaries
of as many architectures as supported by IDA and the framework(s) used.

• It should be versatile in the sense that it can be applied to programs obfuscated
with any obfuscator of a certain class.

• It should be well-integrated in the user-interface of IDA, using its pre-existing
static analysis and visualisation capabilities to the maximum extent.

Adhering to these ideals as much as possible allows us to determine to a degree whether
or not such a universal tool is even feasible. These requirements are currently not all
satisfied to the fullest degree by Drop, but they served as guidelines during the design
and implementation phases. Additionally, the possibility of making Drop publicly

20 Chapter 4. Introducing Drop

available at some point in the future was not ruled out. Specifically, the possibility of
a submission to the yearly IDA Pro plugin contest1 was kept in mind.

4.1.1 Specific functionality

The functionality of Drop is focussed on attacking a narrow subset of the set of all
types of control-flow obfuscations. Specifically, it is focussed on the detection of several
kinds of opaque predicates, either automatically or with the help of interactivity.

From recent literature (Section 3.3.1) it appears that methods using symbolic exe-
cution can be effective at detecting opaque predicates in a general manner, i.e. without
needing a preprogrammed list of common opaque predicate constructions. For this
reason, Drop’s opaque predicate discovery functionality was based on the algorithm
proposed by Ming et al. [22]. Because this algorithm makes use of symbolic execution,
an appropriate symbolic execution engine needed to be chosen. Section 4.2 outlines
the options available and what choice was made.

Section 4.3 outlines the details of the implemented opaque predicate detection
algorithm and it shows how a symbolic execution–based approach is ideal for the
purpose of interactively adding constraints or symbolic values to a function or branch.

In addition to the ability to detect opaque predicates with or without interactive
input, several requirements were set for Drop’s functionality. Firstly, it would need
to to have some method of visualising the detected opaque predicates and bogus code
within the IDA Pro interface. Secondly, if possible within the constraints of the API
provided by IDA Pro, Drop would need to have the ability to actively remove any
detected bogus control-flow and dead code resulting from opaque predicates from the
control-flow graph view or even from the assembly listing itself.

All of these requirements are satisfied to some degree in the current version of
Drop. Several tests of effectiveness and practicality have been performed, of which
the results are shown in Chapter 5.

4.2 Architectural choices
One of the goals during the creation of Drop was to expand upon work such as
that by Ming et al. [22] and David, Bardin, and Marion [11], both of which use
symbolic execution to detect opaque predicates. While it is possible to implement
a symbolic execution engine from scratch, this is not necessary. There are several
freely available libraries that provide functionality ranging from not much more than
just constraint-solving to full-system symbolic or concolic execution. In our case, the
main deciding factors were (1) what language it is written in (or which bindings are
available) and (2) which architectures are supported for the programs under analysis.
Specifically, because Drop is an IDA Pro plugin, a symbolic execution framework
is needed that can be controlled through C++ or Python and it should preferably
support as many architectures as possible to take advantage of IDA’s wide range of
supported architectures.

Six symbolic execution frameworks were considered: Triton2, BAP3, KLEE4,
S2E5, angr6, and MIASM7. See Table 4.1 for their respective properties. Out of

1https://www.hex-rays.com/contests/index.shtml
2https://triton.quarkslab.com/
3https://github.com/BinaryAnalysisPlatform/bap/
4https://klee.github.io/
5http://s2e.epfl.ch/
6http://angr.io/
7https://github.com/cea-sec/miasm

https://www.hex-rays.com/contests/index.shtml
https://triton.quarkslab.com/
https://github.com/BinaryAnalysisPlatform/bap/
https://klee.github.io/
http://s2e.epfl.ch/
http://angr.io/
https://github.com/cea-sec/miasm

4.3. Implementation 21

Framework Language
(bindings)

Architectures Supported OS Binary
analysis

KLEE C/C++ LLVM IR L No
S2E C/C++ x86(-64), ARM L Yes
Triton C++, Python x86(-64) L,W,M Yes
BAP OCaml, C,

Python, Rust
x86(-64), ARM L,M Yes

MIASM Python x86(-64), ARM(64),
MIPS, SH4, MSP430

L,W,M Yes

angr Python x86(-64), ARM(64),
MIPS(64), PPC(64),
AVR

L,W,M Yes

Table 4.1: Symbolic execution engines that were considered. The
third column shows supported architectures of the file under analysis,
whereas the fourth column shows the supported host operating systems:

L = Linux, W = Windows, M = Mac OS.

these options, for the reasons described above, angr was chosen: it is a Python
framework, it supports a wide range of architectures and on top of that it has many
static-analysis techniques built-in. [26] MIASM would probably be another good
choice, given that it is also a Python framework and that it also supports a wide range
of architectures. Compared to angr however, it is a lot more lightweight and it lacks
some of the functionality for high-level control over the symbolic execution engine
that angr has. KLEE by itself does not support binary analysis without access
to an application’s source code. S2E alleviates this by building upon KLEE and
supporting the lifting of binaries to the intermediate representation used by KLEE
(LLVM IR), but only for a select few architectures. Triton and BAP both appear
like well-rounded frameworks, but they too support only a select few architectures.

4.3 Implementation
The functionality of Drop is contained within four Python files:

drop.py The main plugin file which is initially loaded by IDA Pro. It contains the
main plugin class which keeps track of plugin- and project-wide state.

helpers.py This file contains various helper functions for interfacing with IDA Pro
and the user interface.

gui.py This file contains the PluginForm class representing the layout of the plugin’s
panel together with event-handlers for the various actions that can be performed.
See Section 4.3.1 for a detailed overview of the graphical user interface.

workers.py This file contains the worker classes that perform the analyses correspond-
ing with buttons in the panel. Specifically, the following workers are implemented:
ConcreteRunner, OpaquePredicateFinder, UnreachabilityPropagator and
UnreachableCodePatcher. Sections 4.3.2 to 4.3.5 explain these workers and
their usage in detail. The workers are initialised with all required information

22 Chapter 4. Introducing Drop

from the IDA database before being executed in a separate thread. During their
execution, the user interface is available and the user is able to interact with
IDA as normal. When a worker completes, it sends its results back to the main
thread through a Qt signal, allowing the results to be shown in the plugin panel
and the IDA graph view and disassembly listing.

4.3.1 User Interface and Workflow

When a file is loaded by IDA, Drop automatically attempts to load it as a new angr
project. When activated by pressing the shortcut key (Alt+F6) or by selecting it
from the Plugins menu item, Drop manifests itself as a panel to the side of the main
disassembly view in IDA Pro. The panel is an instance of the IDA PluginForm
object, in which arbitrary Qt widgets can be drawn. Figure 4.1 shows this panel with
its components annotated with circled numbers, corresponding to those mentioned
below.

The panel is arranged in a three-step layout. Each step can be performed with
varying degrees of interactivity. The steps are:

1. Finding candidate code-blocks8 that could contain opaque predicates.

2. Detecting which code-blocks from the candidate set contain (which type of)
opaque predicates.

3. Propagation of unreachability information and dead code removal.

During the first step, the user can either manually mark blocks as candidates 1
or let Drop execute the current function concretely to generate a trace 2 of visited
code-blocks, which will then be marked as candidates.

In the second step, the user is able to provide the symbolic execution engine with
three types of additional context 3 4 5 (see Section 4.3.2) before starting opaque
predicate detection on all marked code-blocks 6 or only on the selected code-block
7 .

If any opaque predicates were found in the second step, the user can instruct
Drop to propagate this unreachability information 9 and possibly manually mark
code-blocks as unreachable 8 . Finally, an optional button press 10 will cause Drop
to attempt to patch no-op instructions over the code-blocks that are marked as
unreachable.

Beneath all of these step-by-step controls, the panel contains a field 11 where any
detected opaque predicates are listed, showing the address of the code-block containing
the opaque predicate, its type, and the detected tautology.

The process of using Drop is also demonstrated in three screen-casts that can be
found online9.

8A code-block is a node in an IDA function control-flow graph
9https://th0mas.nl/downloads/thesis/drop_demo_videos.zip

https://th0mas.nl/downloads/thesis/drop_demo_videos.zip

4.3. Implementation 23

1

2

3 4 5

6 7

8

9

10

11

Figure 4.1: The main Drop panel with annotated buttons and
listings.

24 Chapter 4. Introducing Drop

4.3.2 Interactive input

In addition to the interactive manner in which unreachability and trace information is
being stored (through marked code-blocks in IDA Pro’s assembly listing and graph
view), Drop allows the user to tweak the context of the opaque predicate discovery
algorithm in several ways:

• Additional constraints can be specified that will be added to the constraint-solver
during the opaqueness checks. These constraints are (in-)equalities over two
operands which can be: the value at a specified memory address; a local variable
or argument (i.e. a stack offset); a specified register; or a constant.
In addition to these regular combinations of operands, a special type of constraint
can be added: an (in-)equality over the integer-converted value of a specific
element of a string-array.10 This rather specific constraint-type is specifically
intended to be used for input-invariant opaque predicates that use the atoi
function on a specific element of the list of command-line arguments. An example
of such a constraint would be: atoi(str_arr[2]) >= 42.

• Global variables by default contain their initial value during the symbolic
execution. In some cases this is not desired, e.g. when it is modified by a
different function during regular execution. It is therefore possible to specify
individual global variables to be initialised as an unconstrained symbolic variable
instead. Additionally, a checkbox is available which allows all global variables
to be treated as unconstrained symbolic variables.

• If the analysed function contains (many) calls to a different function which is
either unrelated to any opaque predicates, or of which the analyst knows the
output, she can attach a hook, i.e. a piece of code which will be executed instead
of the original function whenever the original function is called. In cases where
such a function is large or would be called often, a hook can significantly simplify
and speed up analysis. Ideally, the analyst would be able to specify her own
snippet of Python code, but the current version of Drop only allows a choice
from several preset hooks. These presets are:

– Do nothing: don’t set a return value.
– Return a constant word: the analyst can specify the word to return when

adding the hook.
– Return an unconstrained symbolic variable.
– Return a printable character, i.e. a symbolic 8-bit variable with some

constraints that force it to be printable.

4.3.3 Concrete execution

Because the opaque predicate detection process works on a per-block basis, it is useful
to limit this process to code-blocks along an execution trace through the function.
Dedicated tools exist to obtain such traces from actual executions of a program on a
specific architecture (e.g. with Intel’s PIN for x86), but even angr provides us with
similar functionality without this cost of losing architecture-independence.

Drop’s ConcreteRunner worker generates an execution trace through a single
function by letting angr ‘explore’ with all symbolic functionality turned off, starting

10This special constraint-type is referred to as atoi-on-argv in this thesis.

4.3. Implementation 25

(a) Adding a new (in-)equality
constraint.

(b) Adding a new symbolic global vari-
able.

(c) Adding a function hook.

Figure 4.2: Screenshots of the dialogs for interactive input.

at an initialised function entry state with user provided parameters. When using
angr in this manner it is effectively an inaccurate machine-simulator because kernel
or library functions might not be (fully) implemented, memory might not be simulated
properly and most of all: execution is started at the current function without any
context of the rest of the program’s execution. Nevertheless, the resulting trace does
not need to be accurate as it is only meant to be a starting point for opaque predicate
detection.

4.3.4 Opaque predicate detection

The opaque predicate detection technique that was implemented in the OpaquePredicateFinder
class of Drop works by performing the following steps for every branching code-block
(‘branch’) in the set of marked blocks (e.g. the concrete trace):

1. Calculate the dominator set of the branch, defined as the set of nodes (i.e. basic
blocks) in the control-flow graph which could have been visited in a path from
the entry-point to the current branch.

2. Perform symbolic execution from the function entry-point to the current branch,
avoiding all basic blocks which are not in the dominator set, and taking into
account the user-provided constraints, symbolic variables and function hooks.
Pick the first path that is found. Note that this shortcut trades soundness for
speed.

3. Extract the list of constraints (i.e. predicates) corresponding to the possible
branches along the path, invert them if the false branch was satisfied in the path.
Call these predicates ψ1...ψn. If any additional regular constraints are provided
for this function by the analyst, append them to this list. If any atoi-on-argv
constraints are provided by the analyst and if a call to atoi was made on the
corresponding provided string-array element: append the provided constraint
on the output of that specific atoi call to the list of predicates.

26 Chapter 4. Introducing Drop

Finally, given the list of predicates, use the constraint solver’s satisfiability check
to determine if the final predicate in the path (ψn) is an opaque predicate:

• ψn is an invariant opaque predicate (see Definition 2.3.1) iff it is a
tautology over its containing variables, which is true iff its inverse, ¬ψn is
not satisfiable. For example, the predicate x ≤ 5 ∨ x > 5 is an invariant
opaque predicate because its inverse, x > 5∧x ≤ 5, is clearly not satisfiable.

• ψn is a contextual opaque predicate (see Definition 2.3.2) iff its truth
value is always implied by the conjunction of the previous predicates (i.e. the
path condition before reaching the current branch). Therefore we get:

ψn is a contextual opaque predicate
⇔ (ψ1 ∧ ψ2 ∧ ... ∧ ψn−1)→ ψn

⇔ (¬ψ1 ∨ ¬ψ2 ∨ ... ∨ ¬ψn−1) ∨ ψn

Again, this holds for all values of the contained variables iff the formula is
a tautology, which is true iff its inverse is not satisfiable:

⇔ ¬((¬ψ1 ∨ ¬ψ2 ∨ ... ∨ ¬ψn−1) ∨ ψn) not satisfiable
⇔ (ψ1 ∧ ψ2 ∧ ... ∧ ψn−1) ∧ ¬ψn not satisfiable

Therefore, ψn is a contextual opaque predicate iff (ψ1∧ψ2∧...∧ψn−1)∧¬ψn

is not satisfiable. For example, if the path condition contains the conjuncts
ψ1 : x ≡ 0 (mod 8), ψ2 : x > 16, and ψ3 : x < 30, then the predicate
x = 24 is contextually opaque, because the conjunction of the previous
conditions with its inverse (i.e. x ≡ 0 (mod 8) ∧ x > 16 ∧ x < 30 ∧ x 6= 24)
is not satisfiable.

This core idea of this method of detecting opaque predicates was first described by
Ming et al. [22]. Note that any input-invariant opaque predicates (see Definition 2.3.3)
will be detected as contextual opaque predicates, if and only if the correct context (or
a stronger form) is provided by the analyst as a special atoi-on-argv constraint. For
example, if a program was obfuscated with the input-invariant atoi(argv[1]) > 0, it
will still be detected if the analyst realises that this value is always larger than 100
and specifies the constraint atoi(argv[1]) > 100, because x > 100 implies x > 0.

4.3.5 Visualisation and elimination

After an opaque predicate has been detected, it is added to the opaque predicate table
for the current function and it is visualised in the IDA Pro disassembly listing and
control-flow graph view by marking the basic block that contains the predicate with a
special colour. Additionally, basic blocks that can only be reached by the unsatisfiable
branch of a conditional jump guarded by an opaque predicate are marked with a
different colour signifying that they consist of dead code.

Following this, the user can click a button to start the UnreachabilityPropagator
worker which will iteratively mark basic blocks as unreachable if all their predecessors
are marked as unreachable (ignoring loop-back edges). After this process, it is
immediately more clear to an analyst which branches and basic-blocks belong to bogus
control-flow (based on the provided context).

Lastly, after a section of the function is marked as unreachable, the user can press
a button to run the UnreachableCodePatcher, which will try to replace unreachable

4.3. Implementation 27

code by no-op instructions and remove any bogus conditional jumps. Replacing code
by no-op instructions is the most practical method of removing code without having
to restructure, modify and recompile the disassembled instructions.

After this process, the control-flow graph is simplified and more closely approx-
imates a sound control-flow graph of the current function (meaning that after this
process, the control-flow-graph contains less nodes and edges that can never be visited).
Additionally, if the Hex-Rays Decompiler is installed and the loaded program is of a
supported architecture11, the user can run the decompiler on the patched code, which
might result in a decompilation output that is a lot more clean (i.e. containing less
bogus code) than before the removal of bogus control-flow.

11being ARM, ARM64, x86, x86-64 and PowerPC

29

Chapter 5

Evaluation

The effectiveness of the deobfuscation capabilities of Drop is somewhat difficult to
measure properly because of the number of parameters involved. These parameters
include: the program or function that was obfuscated, the type of obfuscation used,
the compiler (settings) used and the target architecture of the program. Additionally,
as established in Section 2.2 and in Chapter 3, the quality of a deobfuscation result
can be subjective and can depend on what type of information an analyst is after.

However, when attacking opaque predicates specifically, the primary goal of a
deobfuscator is always to detect their presence, which is the very thing these predicates
are designed against (hence why they are opaque). Therefore, if we have control over
the insertion of opaque predicates (or if we can determine how many were inserted),
we can use the number of opaque predicates that are properly detected by the
deobfuscator as an objective measure of effectiveness. This metric is used for the
experiments in sections 5.1 and 5.2, which respectively try to determine how well
different variations of opaque predicates are detected by Drop and how well Drop
is able to deal with opaque predicates in ‘real’ code. The experiment in Section
5.1 also tests the unreachability propagation and dead-code removal capabilities of
Drop, showing the effect of deobfuscation on a function’s control-flow graph and the
Hex-Rays decompilation output.

Section 5.3 describes a program that was written and obfuscated with an input-
invariant opaque predicate. It shows that Drop is able to detect this predicate if and
only if an appropriate invariant is provided as a special additional constraint by the
analyst.

Section 5.4 describes an experiment that was performed to test whether Drop is
able to perform opaque predicate detection and removal on programs compiled for
architectures other than x86.

5.1 Effectiveness on a small constructed program
In order to experiment with various types of opaque predicates in a very simple
environment, a small C program – fib_fac.c – was created. It contains two functions
– fac and fib – which respectively calculate the factorial of n, and the nth Fibonacci
number. Figure 5.1 shows the code for these functions.

Eight obfuscated versions of this program were obtained, each obfuscated with a
different type of opaque predicate, either manually (for three of them) or automatically
(for five of them). Each obfuscated version was compiled to a 32-bit x86 ELF-file for
Linux, with compiler optimisations turned off (to prevent the compiler from interfering
with any obfuscations). Each executable was then loaded into IDA Pro, where
the opaque predicate detection and removal functionalities of Drop were applied to
it. Opaque predicate detection was able to be performed in reasonable time on all
branching code-blocks because of the small size of both functions. Therefore, the

30 Chapter 5. Evaluation

4 // Calculates the n-th
Fibonacci number

5 int fib(int n) {
6 int i, c, d;
7 int a = 1;
8 int b = 1;
9

10 for (i = 0; i < n; ++i)
{

11 c = a;
12 a = a + b;
13 b = c;
14 }
15
16 return a;
17 }

19 // Calculates n!
20 int fac(int n) {
21 int res = 1;
22 int i;
23
24 if (n < 0) {
25 return 0;
26 }
27
28 for (; n > 1; --n) {
29 res *= n;
30 }
31
32 return res;
33 }

Figure 5.1: The important functions of fib_fac.c

Obfuscation type Extra input
required

All predicates
detected

Removal
successful

Manual
Invariant, number-theoretic (1 variable) no yes yes
Invariant, number-theoretic (2 variables) no yes yes
Contextual, number-theoretic no yes yes

Tigress

Invariant, linked-lists (list) yes yes yes
Invariant, arrays (array) (clang) no yes yes
Invariant, arrays (array) (gcc) no no n/a
Invariant, number-theoretic (env) no yes yes

OLLVM Invariant, number-theoretic (-bcf) no yes yes

Table 5.1: Results of applying the IDA plugin to obfuscated versions
of fib_fac.c, obtained through the manual and automatic insertion

of different types of opaque predicates.

5.1. Effectiveness on a small constructed program 31

generation of a trace through concrete execution was not needed and not part of this
experiment.

Table 5.1 shows the results of this experiment. For each obfuscation type, the
following results are noted in the table:

• Extra input needed: Was the analyst required to provide extra constraints,
symbolic variables or function hooks to improve opaque predicate detection?
The process of choosing appropriate concrete values in order for the algorithm
to analyse all potential predicates can also be interactive but is not included in
this metric, as mentioned above.

• All predicates detected: Were all the opaque predicates that were present in the
executable detected properly by Drop?

• Removal successful: Did the unreachability propagation and dead-code removal
functionality work properly, i.e. did it remove all dead code (is it complete) and
did it not remove any possibly reachable code (is it sound)?

As can be seen in the table, opaque predicate detection and removal was successful
for all samples except for one: Tigress’s array-invariant–based opaque predicates,
compiled with gcc. For this executable, the analysis got stuck on a large and complex
constraint resulting from a C expression similar to the following one:

array [3 * (x % 10)]

Interestingly, when the same obfuscated program is compiled with clang, no such
problem occurs. Investigation revealed that in this case, gcc applied an optimisation
to the sub-expression (x % 10) that results in a series of copy, multiplication and shift
instructions being generated instead of – in this case, for x86 – an IDIV instruction
which is generated by clang. In fact, any integer division or modulo operation with
a constant number can be replaced by a multiplication by the multiplicative inverse of
that number [14]. This transformation is applied by some compilers because integer
multiplication is often faster than integer division.

When the result of this optimisation is combined with the multiplication and
array-indexing operations already present in the expression, the resulting set of lifted
instructions apparently results in a rather difficult-to-solve constraint. This is the
only case out of the eight sample files where the total analysis time was not trivially
small (i.e. in the order of several seconds). In fact, analysis here was stopped after no
solution was found after 30 minutes.

We see that there is only one case in the table where extra user-input was required,
namely for Tigress’s linked-list–based opaque predicates. This executable is deobfus-
cated properly when the user specifies the invariant property as an additional constraint.
In this case specifically, a linked-list pointer called _obf_2_main__opaque_list1_1
was created by Tigress, which is initialised in main and updated in multiple functions
by pointing it to the value of its next pointer. The structure is initialised in such a way
that the next pointer of these links is never NULL. Because this initialisation occurs in a
different function, Drop has no knowledge of this invariant. The analyst can specify it
by marking the pointer as being symbolic (by adding _obf_2_main__opaque_list1_1
to the list of symbolic variables) and adding a non-zero constraint (by entering
[_obf_2_main__opaque_list1_1] != 0 as a new constraint).

32 Chapter 5. Evaluation

5.1.1 Control-flow graphs

Figure 5.2 shows the effect of opaque predicate detection and removal on the control-
flow graph of the fac function. The obfuscated version shown corresponds to the first
row of Table 5.1. In Figure 5.2c it is clearly visible that the three yellow basic-blocks
are directly unreachable as the result of invariant opaque predicates. Figure 5.2b
shows the control-flow graph of the same function after this unreachable code was
removed. The resulting graph is a lot more similar to the control-flow graph of the
unobfuscated original (Figure 5.2a) than to the obfuscated version of the program.
However, even though the function’s control-flow is mostly restored, one can see that
many dead instructions within reachable basic-blocks remain. In Figure 5.2b this is
most clearly visible in the largest and centre-most code-block in which all but the
final two instructions are dead. In fact, apart from the final jump, the only non-dead
instruction in this block is the final move instruction (mov eax, [ebp+var_4]), which
is the only instruction in the original version of this code-block (the centre code-block
in Figure 5.2a). The extraneous instructions here were part of the set-up code for the
opaque predicate, but because the code-block in which they reside does not consist
entirely of dead code, they would be difficult to remove. Removing them would require
some form of data dependence analysis.

5.1.2 Decompilation output

An advantage of Drop’s integration within IDA Pro is that if one has an appropriate
license and if the obfuscated program is of a supported architecture, one can use the
Hex-Rays Decompiler to further deobfuscate the resulting control-flow graph. The
decompiler is a deobfuscator in and of itself because firstly, a (pseudo-)C representation
is inherently more structured, and therefore more easily readable and understandable
than a disassembly listing; and secondly, a deobfuscator performs many transformations
to undo compiler tricks and optimisations, especially regarding arithmetic expressions.
The Hex-Rays decompiler is also able to detect and ignore dead instructions in certain
situations, including those like the one mentioned in the previous sub-section.

An example of the power of the decompiler when used together with Drop is
shown in figures 5.3 and 5.4 which respectively show the decompilation output of the
OLLVM-obfuscated version (corresponding to the last row of Table 5.1) of the fac
function before and after the combined process of opaque predicate detection and
dead code removal. Apart from some redundant variable assignments, the result of the
final decompilation is almost equivalent to the original C source-code. Importantly,
it is clear that the removal of bogus control-flow has severely reduced the number
of loop-constructs and goto statements present in the decompilation output. This
difference is especially drastic for programs obfuscated by OLLVM because the dead
code OLLVM inserts after each opaque predicate has a control-flow edge that loops
back to the basic-block containing the predicate, creating a loop-like construct which
makes the decompilation output extra verbose.

5.1. Effectiveness on a small constructed program 33

(a) Original CFG (b) Deobfuscated CFG

(c) Marked obfuscated CFG. Legend: yellow = unreachable because of an
invariant opaque predicate, green = visited in a concrete execution.

Figure 5.2: Control-flow graphs of the original and obfuscated (with
manually added number-theoretic opaque predicates, corresponding to
the first row of Table 5.1) version of the function fac in fib_fac.c.

34 Chapter 5. Evaluation

1 int __cdecl fac(int a1)
2 {
3 bool v1; // bl@2
4 int v3; // [esp +0h] [ebp -28h]@2
5 int v4; // [esp +4h] [ebp -24h]@10
6 int *v5; // [esp +8h] [ebp -20h]@2
7 int *v6; // [esp+Ch] [ebp -1Ch]@2
8 bool v7; // [esp +13h] [ebp -15h]@2
9 int *v8; // [esp +14h] [ebp -14h]@2

10 int v9; // [esp +18h] [ebp -10h]@1
11
12 v9 = a1;
13 if (y2 >= 10 && (((_BYTE)x1 - 1) * (_BYTE)x1 & 1) != 0)
14 goto LABEL_12 ;
15 while (1)
16 {
17 *(& v3 - 4) = v9;
18 *(& v3 - 4) = 1;
19 v1 = *(& v3 - 4) < 0;
20 v8 = &v3;
21 v7 = v1;
22 v6 = &v3 - 4;
23 v5 = &v3 - 4;
24 if (y2 < 10 || (((_BYTE)x1 - 1) * (_BYTE)x1 & 1) == 0)
25 break;
26 LABEL_12 :
27 *(& v3 - 4) = v9;
28 *(& v3 - 4) = 1;
29 }
30 if (v7)
31 {
32 if (y2 >= 10 && (((_BYTE)x1 - 1) * (_BYTE)x1 & 1) != 0)
33 goto LABEL_13 ;
34 while (1)
35 {
36 *v8 = 0;
37 if (y2 < 10 || (((_BYTE)x1 - 1) * (_BYTE)x1 & 1) == 0)
38 break ;
39 LABEL_13 :
40 *v8 = 0;
41 }
42 }
43 else
44 {
45 while (*v6 > 1)
46 *v5 *= (*v6) --;
47 *v8 = *v5;
48 }
49 do
50 v4 = *v8;
51 while (y2 >= 10 && (((_BYTE)x1 - 1) * (_BYTE)x1 & 1) != 0);
52 return v4;
53 }

Figure 5.3: Decompilation of the OLLVM-obfuscated version of fac
in fib_fac.c, before deobfuscation

5.1. Effectiveness on a small constructed program 35

1 int __cdecl fac(int a1)
2 {
3 bool v1; // bl@1
4 int v3; // [esp +0h] [ebp -28h]@1
5 int *v4; // [esp +8h] [ebp -20h]@1
6 int *v5; // [esp+Ch] [ebp -1Ch]@1
7 bool v6; // [esp +13h] [ebp -15h]@1
8 int *v7; // [esp +14h] [ebp -14h]@1
9 int v8; // [esp +18h] [ebp -10h]@1
10
11 v8 = a1;
12 *(& v3 - 4) = a1;
13 *(& v3 - 4) = 1;
14 v1 = *(& v3 - 4) < 0;
15 v7 = &v3 - 4;
16 v6 = v1;
17 v5 = &v3 - 4;
18 v4 = &v3 - 4;
19 if (v1)
20 return 0;
21 while (*v5 > 1)
22 *v4 *= (*v5) --;
23 *v7 = *v4;
24 return *v7;
25 }

Figure 5.4: Decompilation of the OLLVM-obfuscated version of fac
in fib_fac.c, after automatically detecting opaque predicates and

removing the resulting dead code

36 Chapter 5. Evaluation

before obfuscation after Tigress after OLLVM
Function name #CB #instr #CB #instr #CB #instr
calculate_columns 22 183 40 648 58 356
init_column_info 18 142 36 719 53 337
signal_setup 23 118 39 594 59 366
make_link_name 10 67 22 475 36 262
long_time_expected_width 9 59 31 781 20 119
cmp_ctime 6 59 16 490 9 86
queue_directory 7 47 17 378 - -
xstrcoll_df_extension 8 40 20 478 14 74
set_exit_status 5 18 18 1339 11 49

Table 5.2: Functions from GNU ls, before and after obfuscation
with Tigress and OLLVM (see sections 5.2.1 and 5.2.2). The original
version and the Tigress output were compiled with gcc for x86, with
optimisations turned off. OLLVM was also instructed to compile for x86
with optimisations turned off. Legend: #CB: number of code-blocks

in function; #instr: number of instructions in function.

5.2 Effectiveness against ‘real’ code
While the Fibonacci and factorial functions of fib_fac.c were useful as a clean
environment in which different variants of invariant and contextual opaque predicates
could be tested, they are not very representative of a typical use-case for obfuscation.
It is important to also test how well Drop is able to handle larger functions with
various kinds of control-flow constructs, local and global variables, local function calls,
library function calls, etcetera.

A program containing many such constructs is ls from the GNU coreutils1. The
coreutils have been used for the evaluation of deobfuscators and symbolic execution
engines in the past[11][6]. For this experiment, the ls program was arbitrarily
picked from the coreutils. Tigress and OLLVM are used in sections 5.2.1 and 5.2.2
respectively to obfuscate nine arbitrarily picked medium-sized functions from GNU
ls. These functions are listed in Table 5.2.

5.2.1 Obfuscated by Tigress

In Section 5.1, it is shown that Tigress’s number-theoretic environment-based ob-
fuscation technique (i.e. the env option for --InitOpaqueStructs) was detected by
Drop when applied to the constructed Fibonacci and factorial functions. In this
experiment, the same obfuscation was applied to the nine chosen functions from
GNU ls. Tigress was instructed to insert five opaque predicates per function (us-
ing --InitOpaqueCount). However, this seems to be treated more as a guideline
by Tigress: in some cases more than five opaque predicates are inserted, and some
opaque predicates are inserted in the dead-code portion of another opaque predicate,
making them unreachable. This is accounted for in the results of this experiments, as
explained below. For all Tigress-based experiments, Tigress version 2.1 is used and
provided with a random seed value of 42 for consistency and reproducibility.

Table 5.2 shows the size of the functions before and after this obfuscation in terms
of the number of code-blocks detected by IDA and the number of instructions per

1https://www.gnu.org/software/coreutils/coreutils.html

https://www.gnu.org/software/coreutils/coreutils.html

5.2. Effectiveness against ‘real’ code 37

trivial trace all branches
Function name #present #reachable #found #fp #found #fp
calculate_columns 5 5 0* 0 0* 0
init_column_info 6 5 0 0 5 0
signal_setup 6 5 1 0 5 2†
make_link_name 5 4 2 0 4 0
long_time_expected_width 5 4 4 1‡ 5 1‡
cmp_ctime 5 5 0§ 0 5 0
queue_directory 5 5 1 0 5 0
xstrcoll_df_extension 5 5 3¶ 0 5¶ 0
set_exit_status 9 4 4 0 4 0

Table 5.3: Number of opaque predicates present, reachable and
detected in Tigress-obfuscated functions from GNU ls. See Section
5.2.1 for an explanation of the annotations. Legend: #present: number
of opaque predicates (OPs) present in the function; #reachable: number
of OPs not hidden by other OPs; #found: total number of OPs detected
of which #fp are false positives, along a trivial concrete trace or all
branching code-blocks in the function through manual selection. Bold

numbers indicate that all reachable OPs were detected.

function. It can be seen that in most cases, the number of code-blocks after obfuscation
with Tigress is roughly twice the original number. The number of instructions after
obfuscation however is much more random, and anywhere between 3.5 and 13 times
the original number. This is because the size of the opaque predicates inserted by
Tigress is random but even the smaller ones take up a large amount of instructions.

The obfuscated version of ls was loaded into IDA Pro and each of the nine
obfuscated functions was ‘attacked’ with Drop. The following steps were performed:

1. A concrete trace was generated with the value 0 provided for all function
parameters for a fair comparison between functions. In some cases this causes
the concrete execution to skip most of the function body (where 0 is an invalid
or trivial input) but it shows what can be detected without the need for the
analyst to have an understanding of the functions in question.

2. Relevant context was provided for this program and the type of opaque predicates
that are inserted: the Tigress-generated global variable _obf_1alwaysZero was
constrained to zero, while all other global variables were set to be symbolic. In
a few cases, function hooks were added to aid symbolic exploration by returning
an unconstrained value.

3. Opaque predicate detection was performed on the highlighted trace.

4. Opaque predicate detection was performed on all predicates in the function by
marking predicate-containing code-blocks as ‘trace’, and re-running the opaque
predicate detection.

Table 5.3 shows how many opaque predicates are contained in each function and how
many of those are reachable, together with the results of step 3 and 4 above, where
the total number of detected opaque predicates is shown together with the number of
false positives, i.e. detected opaque predicates which are either not opaque, or were
not inserted by Tigress. Numbers highlighted in a bold font indicate the cases where

38 Chapter 5. Evaluation

all opaque predicates were discovered. The following annotations are referred to in
Table 5.3:

* For an unknown reason, none of the opaque predicates in this function are
detected. Further investigation is needed to determine why this case fails.

† These two false positives are caused by the algorithm’s greedy behaviour, i.e. only
looking at one path from the start of the function to the destination branch.
Additionally, because of this, two actual opaque predicates are not detected by
the algorithm because they are only reachable through the predicates falsely
marked as opaque.

‡ This false positive is an interesting case: a stack canary check inserted by gcc,
which is marked as an invariant opaque predicate. Under normal circumstances
with no illegal manipulations of the stack, this is in fact an accurate conclusion.
However, since it was not inserted by Tigress, it is regarded in this experiment
as a false positive, even though the algorithm arguably did not make a mistake
here.

§ For this function, concrete execution fails entirely. The cause of this is most
likely related to the fact that one of the arguments of this function is a function
pointer, which is called in the function body. Nevertheless, all opaque predicates
are detected after hooking the timespec_cmp function (to always return an
unconstrained value) before running opaque predicate detection on all branching
code-blocks.

¶ Here, the function is_directory needed to be hooked (to always return an
unconstrained value) in order for all opaque predicates to be detected.

The results in Table 5.3 show that for seven out of the nine functions tested,
all opaque predicates were discovered. However, for only one of these functions
(set_exit_status), all opaque predicates were found (and therefore visited) along the
generated trace. For a couple of functions, none of the opaque predicates were visited
along the trace. While we should not expect a single trace to visit all opaque predicates
in a given function, we can at least improve the number of opaque predicates found
by picking better values to pass as function arguments for concrete execution. Take
the function init_column_info for example. It has a single integer parameter which
is treated as a boolean value. When a zero is passed, the concrete trace completely
skips most of the function body, while a value of one causes it to pass by several
of the opaque predicates present in the function. We can conclude that the ability
to generate a concrete trace might not always be very helpful, but it can at least
provide the analyst with a starting point, especially when provided with cleverly
chosen function arguments.

5.2. Effectiveness against ‘real’ code 39

trivial trace all branches
Function name #present #found #fp #found #fp
calculate_columns 7 7 0 7 0
init_column_info 12 2 0 13 1*
signal_setup 14 2 0 6† 0
make_link_name 10 4‡ 0 10‡ 0
long_time_expected_width 4 4§ 0 4§ 0
cmp_ctime 2 0 0 2 0
queue_directory 0 0 0 0 0
xstrcoll_df_extension 2 2¶ 0 2¶ 0
set_exit_status 2 0 0 2 0

Table 5.4: Number of opaque predicates present and detected in
OLLVM-obfuscated functions from GNU ls. See Section 5.2.2 for an
explanation of the annotations. Legend: #present: number of opaque
predicates (OPs) present in the function; #found: total number of OPs
detected of which #fp are false positives, along a trivial concrete trace
or all branching code-blocks in the function through manual selection.

Bold numbers indicate that all OPs were detected.

5.2.2 Obfuscated by OLLVM

The experiment from Section 5.2.1 was repeated, but OLLVM was used instead of
Tigress for the insertion of opaque predicates. A difference between Tigress and
OLLVM is that – at least for the functions in this experiment – OLLVM never
inserts opaque predicates in locations that are unreachable because of another opaque
predicate. Therefore, in this experiment, all inserted opaque predicates should be
reachable through symbolic execution. Table 5.4 shows the result of this experiment.
The following annotations are referred to in Table 5.4:

* In this case, the false positive result is caused by the greedy behaviour of the
opaque predicate detection algorithm: in order to minimize analysis time, the
first path that is found from the start of the function to the branch in question
is treated as the only path. In cases such as this where an essential containing
variable is modified along a second path, the predicate can be marked as opaque
when it is not.

† Here, a loop-limiting optimisation in the detection algorithm causes it to miss
eight opaque predicates. These branches can only be reached when a loop of
many iterations is properly executed. Without this time-saving optimisation
turned on, all opaque predicates would be found.

‡ § ¶ In these cases, the respective functions dir_len, align_nstrftime and is_directory
needed to be hooked (to always return an unconstrained value) in order for all
opaque predicates to be detected.

The main result of this experiment is that for eight out of nine functions, all opaque
predicates were detected after appropriate context (i.e. correctly hooked functions and
a proper selection of trace blocks) was provided to the algorithm.

40 Chapter 5. Evaluation

5.3 Input-invariant opaque predicates
Drop’s capability of detecting input-invariant opaque predicates was put to the test
on a Tigress-obfuscated implementation of the Caesar cipher, caesar.c. Appendix A
lists the contents of this program.

The program’s three command-line arguments specify the following respectively:
its mode of operation – i.e. encryption or decryption; the number of places to shift
(i.e. the key); and the message to encrypt or decrypt. The second argument should
always be a positive integer. If it is not, the program exits with an error code. In other
words, the condition atoi(argv[2]) >= 1 should always hold for valid invocations of the
program. Therefore, that condition was provided as an input invariant to Tigress (by
providing the option --Inputs=’+2:int:1?2147483647’, i.e. the second argument
from the left is an integer between 1 and INT_MAX inclusive). Tigress was instructed
to insert one input-invariant opaque predicate per function.

The resulting obfuscated version of caesar.c (see Appendix B) has two interesting
changes, compared to the original:

• A global variable called _obf_2_main__argv is added, which is assigned the
value of argv in the main function. This allows input-invariant opaque predicates
to be added in any function.

• In the caesar function, an input-invariant opaque predicate is inserted inside
the while-loop. Specifically, line 13 of the original program, i.e.:

13 str[i] = ((str[i] - ’a’ + num_shift) % 26) + ’a’;

is replaced by the following code in the obfuscated program:
105 atoi_result7 = atoi (*(_obf_2_main__argv + 2));
106 if ((atoi_result7 - 1 < 0) + (atoi_result7 - 2147483647 >

0)) {
107 *(str + i) = (char)2;
108 } else {
109 *(str + i) = (char)((((int)*(str + i) - 97) +

num_shift) % 26 + 97);
110 }

Apart from some extra casts and different notations being used, we see that atoi is
indeed called on the second command-line argument (line 105), and that this value is
used in the inserted predicate, which makes sure it is within the valid range (i.e. larger
than 0). If it is not, the bogus code on line 107 is executed.

5.3.1 Results

The obfuscated program was compiled with gcc for x86, with optimisations turned
off. After loading the resulting binary executable into IDA Pro and specifying
no additional context to Drop (apart from checking the box to treat all global
variables as unconstrained symbolic variables), it did not detect the input-invariant
opaque predicate. However, when the input invariant was specified as a constraint
(i.e.: atoi(argv[2]) >= 1), the opaque predicate was detected. Specifying a stronger
invariant (such as atoi(argv[2]) >= 5) will also cause the opaque predicate to be
detected.

5.4. Architecture-independence 41

5.4 Architecture-independence
In principle, Drop is architecture-independent in the sense that it supports all
architectures supported by both IDA Pro and angr. In practice, all experiments
above have been performed on x86 binaries, which was also the main focus during
the development of Drop. Each processor architecture or instruction-set has its
quirks and peculiarities2, especially regarding how it is treated by IDA Pro’s loader
and angr’s loader and instruction lifter. In order for us to be able to claim true
architecture-independence, proper testing is required. Because this is not the main
focus of this thesis, it is left as future work.

Nevertheless, a small experiment was performed where the first obfuscated test
from Table 5.1 has been (cross-)compiled using GCC for x86, x86_64, ARM64 and
MIPS64. All opaque predicates in the fib and fac functions were detected in all of
these executable files. Patching unreachable code worked well for all architectures,
although for ARM and MIPS, the resulting CFG as rendered by IDA after dead-code
removal has some extraneous blocks filled with NOP instructions, making it slightly
harder to understand compared to the other architectures. For the architectures for
which the Hex-Rays decompiler is available (x86-* and ARM*), the decompilation
output represented the original program almost precisely (similar to the result in
figures 5.3 and 5.4).

2Such as ARM’s different modes and conditional instructions

43

Chapter 6

Conclusions and reflection

6.1 Conclusions
Despite the large volume of literature on opaque predicates – from both a protection and
from an attack standpoint, i.e. obfuscation (Chapter 2) and deobfuscation (Chapter 3)
– there are not many tools available that allow for automated deobfuscation of control-
flow obfuscations. The tools that are available [22][6][18] are lacking in accessibility,
versatility or both. A tool such as LOOP[22] for example is difficult to set up and has
limited applicability because of its lack of manual controllability and its dependency
on a specific hardware architecture.

Experiments in Chapter 5 have shown that a more versatile approach to opaque
predicate detection is possible and can be effective. By making use of the powerful
visualisation and analysis capabilities present in IDA Pro combined with the flex-
ibility of the angr platform, Drop – the tool produced for this thesis – is able to
(semi-)automatically detect, visualise and remove the bogus control-flow resulting from
various types of invariant and contextual opaque predicates. We saw that dead-code
removal by patching code in IDA Pro’s assembly listing is especially useful when
combined with the power of the Hex-Rays decompiler. The combination of applying
Drop’s dead-code removal and Hex-Rays decompilation transformation sometimes
results in almost completely deobfuscated C-like source-code.

Additionally, we can conclude that the fact that an analyst can interactively
specify additional context (i.e. constraints, symbolic variables and hooks) to the
opaque predicate detection process allows Drop to be used in a much more versatile
manner compared to a fully automated approach. Despite this, experiments also show
that there are still many cases where the effectiveness or efficiency of Drop is far
from optimal, even when appropriate additional context is provided by the analyst
(see Section 5.1).

From experiments in Section 5.3 we draw the conclusion that it is in fact possible to
detect and revert obfuscations that forego the functionality property (i.e. obfuscations
that require the obfuscated program to produce identical output to the original
program only for valid inputs) such as input-invariant opaque predicates which are
only opaque given the fact that a certain invariant over the program arguments holds.
Specifically, if the analyst is able to determine this invariant or a stronger condition,
she can specify it to Drop as an additional constraint, and Drop’s adaptation of the
algorithm of Ming et al. [22] will able to detect the input-invariant opaque predicates
as being contextual opaque predicates.

44 Chapter 6. Conclusions and reflection

6.2 Future work
Despite the positive results from the experiments in Section 5, there are aspects of
Drop that could be improved:

• The interface for providing additional constraints is currently limited to (in-)equalities
on specific types of operands with the special exception of (in-)equality con-
straints on the atoi-converted value of a string-array element and a constant
value. While this is sufficient for the scenarios discussed in this thesis, a more
generalised interface allowing other types of user-provided constraints could be
useful for other scenarios.

• Similarly, the function hooking functionality is currently limited to a few pre-
defined functions. A more flexible approach would be to allow the analyst to
provide her own python function for a given hook.

• Dead-code patching is currently rather rudimentary. It could be improved by
performing instruction-level analysis, e.g. using data-dependence information.

• Proper detection and deobfuscation of the div-by-mul optimisation (as mentioned
in section 5.1) could be implemented.

• Drop could possibly be expanded to detect (generalised) dynamic opaque
predicates, or even different types of control-flow obfuscation using similar
symbolic-execution–based techniques.

Additionally, there would be many benefits to having better integration of the plugin
within IDA. Specifically, the following improvements could be made in this area:

• Making use of IDA’s debugging/tracing infrastructure and interface. IDA allows
plugins to register a debugger, providing API support for stepping through code,
accessing memory, and other operations. Integrating Drop with this API and
registering the current ‘concrete execution’ functionality as a debugger would
not only allow other debugger-plugins to be used for trace generation, but also
allow for things like exploration and modification of memory space using the
pre-existing IDA user interface.

• Currently, angr’s own control-flow graph generation algorithms are used
(CFGAccurate and CFGFast as a fall-back), and code-block/basic-block addresses
are carefully translated between IDA’s representation and angr’s representation
when needed, which inevitably causes problems in various edge-cases. A much
better approach would be to natively extract IDA’s control-flow graph and use
it within angr.

• The IDA Pro API allows plugins to register context-menus and keyboard
short-cuts in various locations within the interface. Drop could greatly benefit
from this.

• Right now, settings and internal state of Drop cannot be saved or loaded, and
analysis needs to be re-run when a project is closed and re-opened in IDA Pro.
An obvious solution to this problem would be to save and load this internal
state together with IDA project files.

6.2. Future work 45

Apart from the above-mentioned points of improvement, these aspects inherent to
the design of either Drop or its dependencies are non-optimal:

• In order for an analyst to use Drop to deobfuscate a function, that function needs
to be fully and properly recognised by both IDA Pro and angr. Specifically,
functions which are obfuscated to include garbage data behind opaque predicates
might not be properly recognised as such and might cause the reconstructed
control-flow graph of IDA, angr or both to be incomplete. This, in turn, might
cause opaque predicate detection to fail. In order to solve this problem, an
entirely different approach would have to be taken to opaque predicate discovery,
instead of the current function-based approach. Luckily, such garbage data–
inserting obfuscations are not stealthy at all and therefore unlikely to be used in
situations where stealth is required.

• During opaque predicate detection, all location-information (e.g. the addresses of
predicates) is stored and processed on the code-block level. The same holds for
unreachability information. However, for more accurate results it might be better
to do so on the instruction level. Because control-flow graph reconstruction can
be inaccurate, this might prevent certain edge-cases where Drop’s analyses fail.
This would however require more resources than the current approach, so it is
unknown whether doing this would be worthwhile.

47

Appendix A

Test program: caesar.c

1 # include <stdio.h>
2 # include <string .h>
3 # include <stdlib .h>
4
5 void caesar (char *str , int num_shift)
6 {
7 int len = strlen (str);
8 int i;
9
10 for (i = 0; i < len; ++i) {
11 // Shift if alphabetic
12 if (str[i] >= ’a’ && str[i] <= ’z’) {
13 str[i] = ((str[i] - ’a’ + num_shift) % 26) + ’a’;
14 }
15 }
16 }
17
18 int main(int argc , char *argv [])
19 {
20 if (argc < 4) {
21 return 1;
22 }
23
24 // whether to encrypt or decrypt
25 int operation = atoi(argv [1]);
26
27 // the number to shift with
28 int num_shift = atoi(argv [2]);
29
30 // the string to encrypt / decrypt
31 char *str = argv [3];
32
33 // Make sure num_shift is positive
34 if (num_shift <= 0) {
35 return 1;
36 }
37
38 if (operation == 0) {
39 // encrypt
40 caesar (str , num_shift);
41 } else {
42 // decrypt
43 caesar (str , 26 - num_shift % 26);
44 }
45

48 Appendix A. Test program: caesar.c

46 printf (" Result : %s\n", str);
47
48 return 0;
49 }

49

Appendix B

Obfuscated version of caesar.c

1 /* Generated by CIL v. 1.7.0 */
2 /* print_CIL_Input is false */
3
4 struct _IO_FILE ;
5 struct timeval ;
6 int _obf_1entropy = 0;
7 extern void signal (int sig , void *func) ;
8 extern float strtof (char const *str , char const * endptr) ;
9 typedef unsigned long size_t ;
10 int _obf_2_main__argc = 0;
11 typedef struct _IO_FILE FILE;
12 extern __attribute__ ((__nothrow__)) int (

__attribute__ ((__nonnull__ (1) , __leaf__)) atoi)(char const
* __nptr) __attribute__ ((__pure__)) ;

13 extern int fclose (void * stream) ;
14 extern double strtod (char const *str , char const * endptr)

;
15 extern void *fopen(char const * filename , char const *mode

) ;
16 extern void abort () ;
17 extern void exit(int status) ;
18 extern int raise(int sig) ;
19 extern int fprintf (struct _IO_FILE * stream , char const

* format , ...) ;
20 extern int strcmp (char const *a , char const *b) ;
21 char ** _obf_2_main__argv = (char **) 0;
22 extern unsigned long strtoul (char const *str , char const

* endptr , int base) ;
23 extern int rand () ;
24 void obfmegaInit (void) ;
25 extern int strncmp (char const *s1 , char const *s2 ,

unsigned long maxlen) ;
26 int _obf_1alwaysZero = 0;
27 extern int gettimeofday (struct timeval *tv , void *tz , ...) ;
28 void caesar (char *str , int num_shift) ;
29 extern int printf (char const * __restrict __format , ...) ;
30 int main(int argc , char ** argv) ;
31 extern __attribute__ ((__nothrow__)) size_t (

__attribute__ ((__nonnull__ (1) , __leaf__)) strlen)(char
const *__s) __attribute__ ((__pure__)) ;

32 extern long strtol (char const *str , char const * endptr ,
int base) ;

33 extern unsigned long strnlen (char const *s , unsigned long
maxlen) ;

50 Appendix B. Obfuscated version of caesar.c

34 extern void * memcpy (void *s1 , void const *s2 , unsigned long
size) ;

35 struct timeval {
36 long tv_sec ;
37 long tv_usec ;
38 };
39 extern void * malloc (unsigned long size) ;
40 extern int scanf(char const * format , ...) ;
41 int main(int argc , char ** argv)
42 {
43 int operation ;
44 int tmp ;
45 int num_shift ;
46 int tmp___0 ;
47 char *str ;
48 int _obf_2_main__BARRIER_0 ;
49 int atoi_result9 ;
50 int atoi_result10 ;
51
52 {
53 obfmegaInit ();
54 _obf_2_main__argc = argc;
55 _obf_2_main__argv = argv;
56 _obf_2_main__BARRIER_0 = 1;
57
58 if (argc < 4) {
59 return (1);
60 }
61 tmp = atoi ((char const *)*(argv + 1));
62 operation = tmp;
63 tmp___0 = atoi ((char const *)*(argv + 2));
64 num_shift = tmp___0 ;
65 str = *(argv + 3);
66 if (num_shift <= 0) {
67 return (1);
68 }
69 {
70 atoi_result9 = atoi (*(_obf_2_main__argv + 2));
71 if (((atoi_result9 - 1 < 0) + (atoi_result9 - 2147483647 >

0)) + 1) {
72 if (operation == 0) {
73 caesar (str , num_shift);
74 } else {
75 caesar (str , 26 - num_shift % 26);
76 }
77 } else {
78 {
79 while ((operation == 0) >= atoi_result9) {
80 caesar (str - -1, num_shift - num_shift);
81 }
82 }
83 }
84 }
85 printf ((char const */* __restrict */)" Result : %s\n", str);
86 return (0);
87 }
88 }

Appendix B. Obfuscated version of caesar.c 51

89 void caesar (char *str , int num_shift)
90 {
91 int len ;
92 size_t tmp ;
93 int i ;
94 int atoi_result6 ;
95 int atoi_result7 ;
96
97 {
98 tmp = strlen ((char const *) str);
99 len = (int)tmp;
100 i = 0;
101 while (i < len) {
102 if ((int)*(str + i) >= 97) {
103 if ((int)*(str + i) <= 122) {
104 {
105 atoi_result7 = atoi (*(_obf_2_main__argv + 2));
106 if ((atoi_result7 - 1 < 0) + (atoi_result7 - 2147483647

> 0)) {
107 *(str + i) = (char)2;
108 } else {
109 *(str + i) = (char)((((int)*(str + i) - 97) +

num_shift) % 26 + 97);
110 }
111 }
112 }
113 }
114 i ++;
115 }
116 return ;
117 }
118 }
119 void obfmegaInit (void)
120 {
121
122
123 {
124
125 }
126 }

53

Bibliography

[1] Joël Alwen, Manuel Barbosa, Pooya Farshim, Rosario Gennaro, S. Dov Gor-
don, Stefano Tessaro, and David A. Wilson. “On the Relationship between
Functional Encryption, Obfuscation, and Fully Homomorphic Encryption”. In:
IMA International Conference on Cryptography and Coding. Springer, 2013,
pp. 65–84.

[2] Bertrand Anckaert, Matias Madou, and Koen De Bosschere. “A Model for Self-
Modifying Code”. In: International Workshop on Information Hiding. Springer,
2006, pp. 232–248.

[3] Genevieve Arboit. “A Method for Watermarking Java Programs via Opaque
Predicates”. In: The Fifth International Conference on Electronic Commerce
Research (ICECR-5). 2002, pp. 102–110.

[4] Sebastian Banescu, Christian Collberg, Vijay Ganesh, Zack Newsham, and
Alexander Pretschner. “Code Obfuscation Against Symbolic Execution Attacks”.
In: Proceedings of the 32Nd Annual Conference on Computer Security Applica-
tions. ACSAC ’16. ACM, 2016, pp. 189–200.

[5] Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit Sahai,
Salil Vadhan, and Ke Yang. “On the (Im)Possibility of Obfuscating Programs”.
In: Advances in Cryptology — CRYPTO 2001. Vol. 2139. Springer Berlin Hei-
delberg, 2001, pp. 1–18.

[6] David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J. Schwartz.
“BAP: A Binary Analysis Platform”. In: International Conference on Computer
Aided Verification. Vol. 6806. Lecture Notes in Computer Science. Springer,
2011, pp. 463–469.

[7] Christian S. Collberg and Clark Thomborson. “Watermarking, Tamper-Proofing,
and Obfuscation-Tools for Software Protection”. In: IEEE Transactions on
software engineering 28.8 (2002), pp. 735–746.

[8] Christian Collberg and Jasvir Nagra. Surreptitious Software: Obfuscation, Water-
marking, and Tamperproofing for Software Protection. 1 edition. Addison-Wesley
Professional, 2009-08-03.

[9] Christian Collberg, Clark Thomborson, and Douglas Low. A Taxonomy of
Obfuscating Transformations. Department of Computer Science, The University
of Auckland, New Zealand, 1997.

[10] Mila Dalla Preda, Matias Madou, Koen De Bosschere, and Roberto Giacobazzi.
“Opaque Predicates Detection by Abstract Interpretation”. In: International
Conference on Algebraic Methodology and Software Technology. Vol. 4019. Lecture
Notes in Computer Science. Springer, 2006, pp. 81–95.

[11] Robin David, Sébastien Bardin, and Jean-Yves Marion. “Targeting Infeasibility
Questions on Obfuscated Codes”. In: arXiv preprint arXiv:1612.05675 (2016).

[12] Stephen Drape et al. “Intellectual Property Protection Using Obfuscation”. In:
Proceedings of SAS 2009 4779 (2009), pp. 133–144.

54 BIBLIOGRAPHY

[13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and
Brent Waters. “Candidate Indistinguishability Obfuscation and Functional En-
cryption for All Circuits”. In: SIAM Journal on Computing 45.3 (2016), pp. 882–
929.

[14] Torbjörn Granlund and Peter L. Montgomery. “Division by Invariant Integers
Using Multiplication”. In: ACM SIGPLAN Notices. Vol. 29. ACM, 1994, pp. 61–
72.

[15] Pascal Junod, Julien Rinaldini, Johan Wehrli, and Julie Michielin. “Obfuscator-
LLVM – Software Protection for the Masses”. In: IEEE, 2015-05, pp. 3–9.

[16] Yuichiro Kanzaki, Akito Monden, Masahide Nakamura, and Ken-ichi Matsumoto.
“Exploiting Self-Modification Mechanism for Program Protection”. In: Computer
Software and Applications Conference, 2003. COMPSAC 2003. Proceedings. 27th
Annual International. IEEE, 2003, pp. 170–179.

[17] Johannes Kinder. “Towards Static Analysis of Virtualization-Obfuscated Bi-
naries”. In: Reverse Engineering (WCRE), 2012 19th Working Conference On.
IEEE, 2012, pp. 61–70.

[18] Johannes Kinder, Florian Zuleger, and Helmut Veith. “An Abstract Interpretation-
Based Framework for Control Flow Reconstruction from Binaries”. In: Interna-
tional Workshop on Verification, Model Checking, and Abstract Interpretation.
Springer, 2009, pp. 214–228.

[19] James C. King. “Symbolic Execution and Program Testing”. In: Communications
of the ACM 19.7 (1976), pp. 385–394.

[20] Kangjie Lu, Siyang Xiong, and Debin Gao. “RopSteg: Program Steganography
with Return Oriented Programming”. In: ACM Press, 2014, pp. 265–272.

[21] Matias Madou. “Application Security through Program Obfuscation”. Disserta-
tion. Ghent University. Faculty of Engineering, 2006.

[22] Jiang Ming, Dongpeng Xu, Li Wang, and Dinghao Wu. “LOOP: Logic-Oriented
Opaque Predicate Detection in Obfuscated Binary Code”. In: Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications Security.
CCS ’15. ACM Press, 2015, pp. 757–768.

[23] Jens Palsberg, Sowmya Krishnaswamy, Minseok Kwon, Di Ma, Qiuyun Shao,
and Yi Zhang. “Experience with Software Watermarking”. In: Computer Security
Applications, 2000. ACSAC’00. 16th Annual Conference. IEEE, 2000, pp. 308–
316.

[24] Rolf Rolles. “Unpacking Virtualization Obfuscators”. In: 3rd USENIX Workshop
on Offensive Technologies.(WOOT). 2009.

[25] Jonathan Salwan. Playing with the Tigress Binary Protection. url: https:
//github.com/JonathanSalwan/Tigress_protection (visited on 2017-02-
01).

[26] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario
Polino, Andrew Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher
Kruegel, and Giovanni Vigna. “SOK: (State of) The Art of War: Offensive
Techniques in Binary Analysis”. In: IEEE, 2016-05, pp. 138–157.

[27] Henrik Theiling. “Extracting Safe and Precise Control Flow from Binaries”. In:
Real-Time Computing Systems and Applications, 2000. Proceedings. Seventh
International Conference On. IEEE, 2000, pp. 23–30.

https://github.com/JonathanSalwan/Tigress_protection
https://github.com/JonathanSalwan/Tigress_protection

BIBLIOGRAPHY 55

[28] Sharath K. Udupa, Saumya K. Debray, and Matias Madou. “Deobfuscation:
Reverse Engineering Obfuscated Code”. In: Reverse Engineering, 12th Working
Conference On. IEEE, 2005.

[29] Chenxi Wang, Jack Davidson, Jonathan Hill, and John Knight. “Protection
of Software-Based Survivability Mechanisms”. In: International Conference on
Dependable Systems and Networks, 2001. DSN 2001. IEEE, 2001, pp. 193–202.

[30] Zhi Wang, Jiang Ming, Chunfu Jia, and Debin Gao. “Linear Obfuscation to
Combat Symbolic Execution”. In: European Symposium on Research in Computer
Security. Vol. 6879. Lecture Notes in Computer Science. Springer, 2011, pp. 210–
226.

[31] Dongpeng Xu, Jiang Ming, and Dinghao Wu. “Generalized Dynamic Opaque
Predicates: A New Control Flow Obfuscation Method”. In: International Con-
ference on Information Security. Vol. 9866. Lecture Notes in Computer Science.
Springer, 2016, pp. 323–342.

[32] Babak Yadegari, Brian Johannesmeyer, Ben Whitely, and Saumya Debray. “A
Generic Approach to Automatic Deobfuscation of Executable Code”. In: 2015
IEEE Symposium on Security and Privacy. IEEE, 2015-05, pp. 674–691.

	Abstract
	Acknowledgements
	Introduction
	Motivation
	Thesis overview

	Obfuscation
	Related concepts
	Formal obfuscation theory
	Control-flow obfuscation
	Opaque predicates
	Number-theoretic predicates
	Aliasing-based predicates
	Contextual opaque predicates
	Input-invariant opaque predicates
	Dynamic opaque predicates
	Other anti–symbolic execution opaque constructs

	Control-flow flattening
	Virtualization obfuscation
	Runtime code generation and modification
	Return-oriented programming
	Tools

	Deobfuscation
	Workflow and tools
	Analysis techniques for automated deobfuscation
	Static analysis
	Symbolic execution

	Dynamic analysis

	Deobfuscation attacks on specific transformations
	Opaque predicates
	Control-flow flattening

	General attacks
	Problem statement

	Introducing Drop
	Requirements
	Specific functionality

	Architectural choices
	Implementation
	User Interface and Workflow
	Interactive input
	Concrete execution
	Opaque predicate detection
	Visualisation and elimination

	Evaluation
	Effectiveness on a small constructed program
	Control-flow graphs
	Decompilation output

	Effectiveness against `real' code
	Obfuscated by Tigress
	Obfuscated by OLLVM

	Input-invariant opaque predicates
	Results

	Architecture-independence

	Conclusions and reflection
	Conclusions
	Future work

	Test program: caesar.c
	Obfuscated version of caesar.c
	Bibliography

